

Energy for Sustainable Development in the Caribbean

Mark Lambrides
Department of Sustainable Development
Organization of American States

27 March 2008

Power Generation in the Caribbean

Country	Thermal	Hydro	TOTAL
Antigua and Barbuda	51	0	51
Barbados	210	0	210
Cuba	3,901	57	3959
Dominica	14	8	22
Dominican Republic	4,184	542	4726
Grenada	32	0	32
Haiti	181	63	244
Jamaica*	1,325	24	1349
Saint Lucia	57	0	57
Saint Kitts & Nevis	47		47
St. Vincent and the Grenadines	18	6	24
Trinidad and Tobago	1,416	0	1416

Source: Energy Information Administration (EIA), 2004

*Wind: Jamaica accounts for 20 MW.

Electricity Sector Organizational Arrangements

- Vertical Monopolies Dominate:
 - Generally operate with long-term agreement, with fixed percentage ROI
 - Limited options for IPPs
 - Small systems create big challenges for competition
 - Private: LUCELEC, GRENLEC, DOMLEC
 - Public: St. Kitts Electricity Dept., NEVLEC, APUA, MONLEC, VINLEC, BL&P

Recent Energy Sector Trends/Developments in the Eastern Caribbean

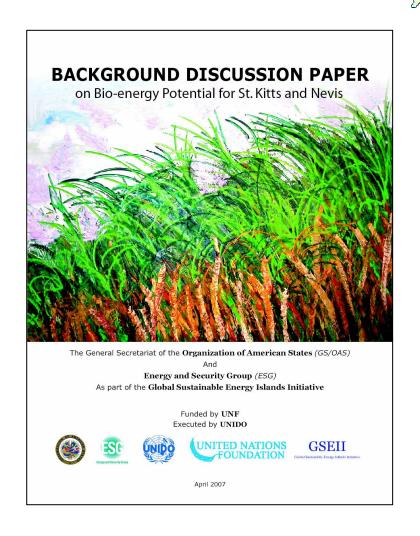
- Push to open electricity markets to competition
- Accept oil discounting arrangements (i.e. PetroCaribe)
- Establish policies, plans, strategies, laws, etc. that favor sustainable energy
- Promote the development and use of biofuels and bioelectricity
- Promote the development and use of other renewable energy alternatives

On-Going Sustainable Energy Programs/Initiatives in the Region

Regional Initiatives:

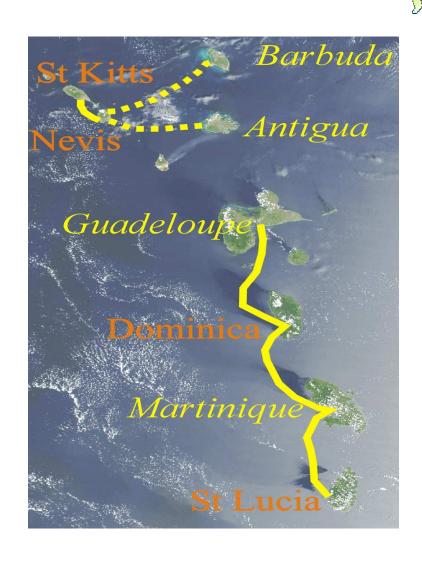
- Caribbean Renewable Energy Development Programme (CREDP)
 [CARICOM, GTZ, UNEP/GEF]
- Global Sustainable Energy Islands Initiative (GSEII) [OAS, The Climate Institute, ESG, UNIDO]
- Proposed establishment of Caribbean Renewable Energy, Energy Efficiency, and Bioenergy Action Program (CREBAP) [OAS, IICA, IADB, CARICOM, Countries]
- Proposed development of CARICOM Regional Energy Policy
- US-Brazil Biofuels Partnership [Dominican Republic, Haiti, St. Kitts and Nevis, El Salvador]

On-Going Sustainable Energy Programs/Initiatives in the Region


- Preparing launch of the Caribbean-EUEI Sustainable Energy Assistance Programme
 - Funding from the European Commission (EUEI)
 - Implementation by the OAS with CARILEC, and CARICOM
 - Project Countries: The Bahamas, St. Vincent and the Grenadines, Antigua and Barbuda, St. Lucia, Dominica, St. Kitts & Nevis, Grenada
 - Key Goals:
 - Develop institutional and human capacity
 - Prepare plans, policies, regulations, laws, ... for sustainable energy
 - Identify and assess project opportunities
 - Establish regional and national sustainable energy support offices

 St. Kitts & Nevis Bio-Energy Feasibility and Development Program

DEPARTMENT OF SUSTAINABLE

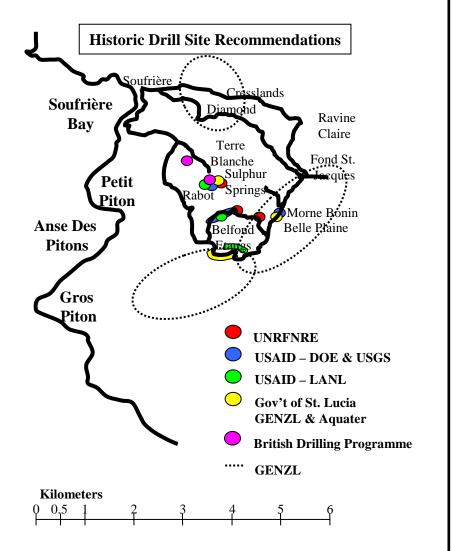

- SKN sugar industry closed in 2005
- OAS/GSEII team assessing biomass to energy alternatives (sugar and municipal waste)
- Options may include ethanol, electricity, other byproducts
- On-going analysis including TA from Dr. Al Binger, and soil/crop analysis by the Fundacao Getulio Vargas (FGV)
- SKN included in USA-Brazil Biofuels Bilateral Agreement

On-Going Sustainable Energy Programs/Initiatives in the Region

- Eastern Caribbean Geothermal Development Project (Geo-Caraïbes) – GEF+ Funded
 - St. Lucia, St. Kitts & Nevis, Dominica
 - Partners: OAS, AfD/FFEM, UNEP
 - PDF-B Project Components:
 - Resource Exploration (Surface Studies)
 - Policy Preparation (Regional and National)
 - Design Drilling Risk/Feasibility Financing Tool
 - Catalyze multiple commercial geothermal projects and interisland electricity transmission

Geo-Caraïbes PDF-B Findings and Next Steps: St. Lucia

Background/History

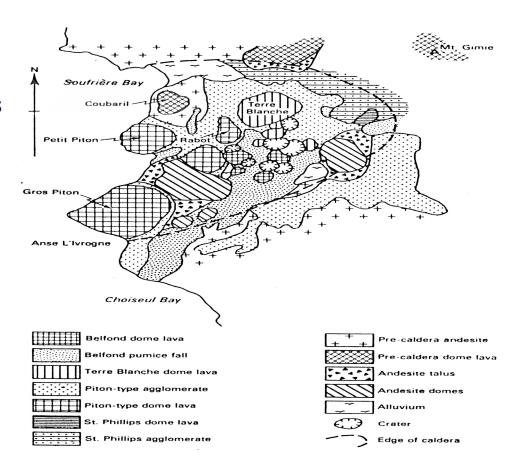

- Serious geothermal resource exploration began in the mid-70s by the British Geological Survey
- After dozens of investigations and nine drilled holes, no real geothermal development has resulted to date

Geo-Caraïbes PDF-B Findings and Next Steps: St. Lucia

Time Line

1951	British start formal investigation (Willmore)
1964	Tomblin performs detailed geology survey
1974	Institute of Geological Sciences (IGS) U.K. resistivity survey
1975-76	Seven wells drilled by IGS (Wells 1-7)
1976	Aspinall et al. perform seismic monitoring
1982	Aquater (Italy): Magnetotellurics, gravity, well data evaluation.
1983-84	Los Alamos (USA): Geology, geochemistry, geophysics
1987-88	USAID/UN: Drill two deep wells (SL1 & SL2)
1992	Geothermal Energy New Zealand: Gravity, resistivity, audio magnetotelluric resistivity
1998-2006	M.I.T.: Reinterpretation of British resistivity data, self potential geophysics, decision analysis

- Reinterpretation of the British Line 9 resistivity data
- 3D rendering of 2D resistivity inversions
- Self Potential surveying
- Geological/Geophysical data integration using a decision analysis method
- **Eleven datasets were used**: Seismics, self potentials, fault structure, deep resistivity, shallow resistivity, geology, topography, wells/springs/geochemistry, shallow AMT, deep AMT, and residual gravity

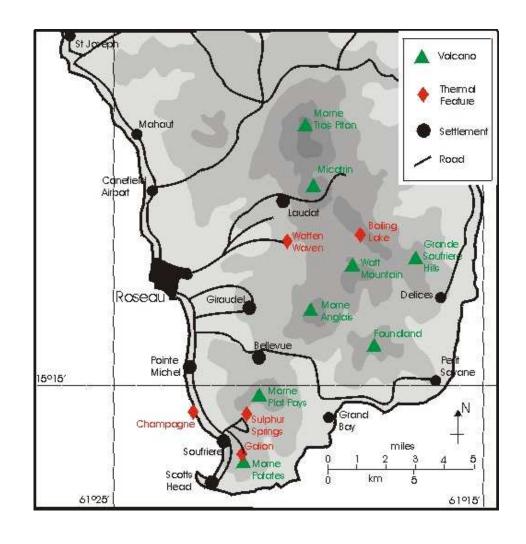


Geo-Caraïbes PDF-B Findings and Next Steps: St. Lucia

Summary/Conclusions

- Good geothermal development potential, but...
- Very complex geology and hydrogeology
- The chemistry of the geothermal waters beneath the Sulphur Springs is quite severe
- The geothermal reservoir cap rocks are weak
- Exploration may be best optimized by exploring for less hot – but less corrosive – waters away from the Sulphur Springs
- Challenge created by designation of World Heritage Site
- Private company holds MOU (from 2004) for exploration/development, but minimal activity

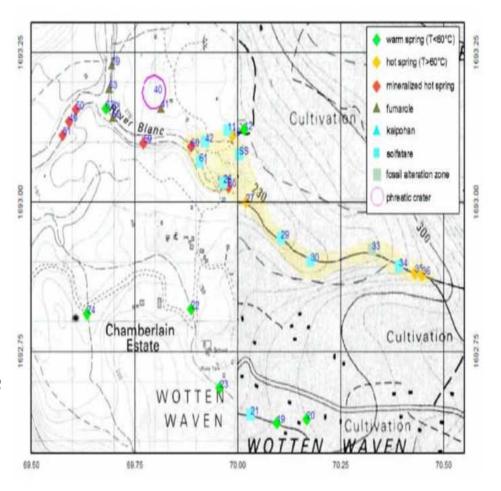
Geology



Geo-Caraïbes PDF-B Findings and Next Steps: Dominica

Geo-Caraïbes Activities

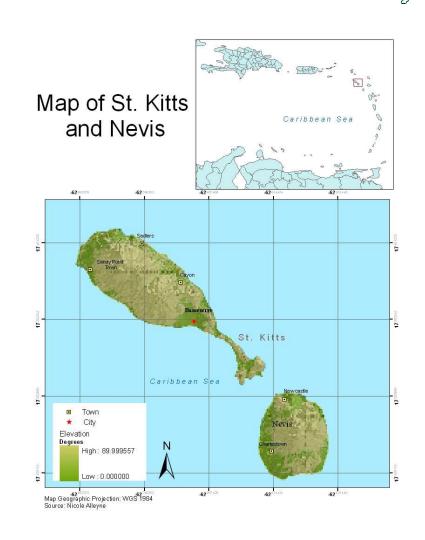
- BRGM/CFG work concentrated on geochemistry and structural geology
- Geochemistry used to characterize the resource at depth, especially in terms of temperature of resource and hydrothermal regime
- Structural geology (also GeoSy and G. Huttrer) important in identifying subsurface porosity/permeability characteristics and ultimately in helping to find the best subsurface flow rates



Geo-Caraïbes PDF-B Findings and Next Steps: Dominica

Current Status

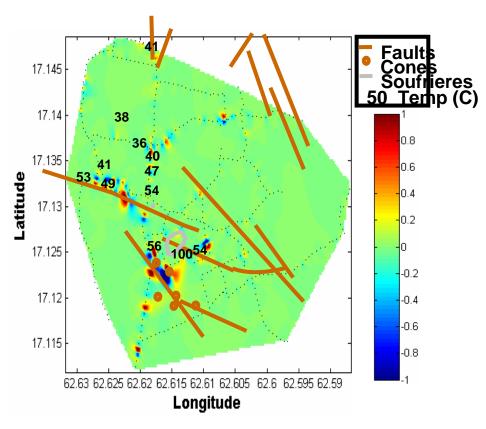
- AfD/FFEM currently supporting expanded geophysics and geochemistry – setting up for exploratory drilling
- EUEI funding feasibility study focused on potential for interconnection with French Islands
- Multiple private sector companies have approached the Government of Dominica with proposals for development



Geo-Caraïbes PDF-B Findings and Next Steps: St. Kitts & Nevis

Background/History

- The islands are two of eleven Caribbean islands of volcanic origin
- The dome within Mt. Nevis is
 ~ 60,000 years old
- Earthquakes are common, with a notable swarm in 1950-1951
- Dominant regional fault orientations are NE-SW and NW-SE
- No geothermal wells drilled until current exercise



Geo-Caraïbes PDF-B Findings and Next Steps: St. Kitts & Nevis

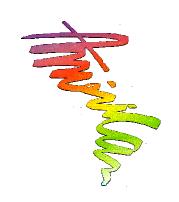
Geo-Caraïbes PDF-B Activities

- Geological reconnaissance mapping of western Nevis
- Geochemical sampling and evaluations of thermal waters, on and offshore, with emphasis on the western side of Nevis
- Gravity and geographic positioning surveys in the SW part of the island
- A Self-Potential ("SP") survey in the SW part of the island
- Geo-Sciences by: GeoSy, G. Huttrer, GeothermEx, MIT, SP International, University of the West Indies – SRU

Normalized SP Current Sources (MIT/SP). Faults and Cones from Huttrer (1998) and Temperatures from GeothermEx (2004).

Geo-Caraïbes PDF-B Findings and Next Steps: St. Kitts & Nevis

Current Status


- Recent MOU/Contract between Nevis Island Administration
 (NIA) and West Indies Power for Exploration and Development
- Additional Geo-Physics, Geo-Chemistry and Geology Completed
- Exploratory well drilling currently underway
- OAS legal team advising Federation and NIA on contracts, PPA, geothermal policy
- Plan to develop geothermal power for use in Nevis, St. Kitts, and export to neighboring islands

New Opportunities to Further Geothermal Development in the Caribbean

- Expansion of "mature" opportunities: Those countries with considerable exploration and research completed: Dominica, St. Kitts & Nevis, St. Lucia, Guadeloupe, Martinique, Montserrat
- Launch of early-stage investigation: St. Vincent & the Grenadines, Grenada, Saba, St. Eustatius
- Partner with regional institutions involved with Energy/Geothermal Development: OAS, CCCCC, UWI, CARILEC...

Thank you!

Mark Lambrides
Energy Division Chief
Department of Sustainable Development
(DSD)

mlambrides@oas.org