Addressing Climate Change With Development

World Economic and Social Survey 2009: Promoting Development, Saving the Planet

October 2009

Background

- Development is a positive-sum game
- Climate change is largely being viewed as a zero sum game, and this inhibits cooperation and effective action
 - Mueller's three models: sovereign, conditional, and joint commitments
- A development-based approach to climate change can transform it from zero- to positivesum game

A Development-Based Approach

• Joint Goals:

- North: full employment and energy security
- South: catch-up growth and energy access
- *Elements*: investment, policy guidance, strategic direction
- Focus: Consensus, Momentum, Transparency
- Results:
 - Enable developing countries to leapfrog
 - Stimulate private sector in North as well as South
 - Promote cooperation

The Challenge

- Immediate Need
 - North: reduce emissions without compromising the goals of full employment and economic stability
 - South: slow (+ eventually reduce) emissions without compromising development momentum
- Success Criterion
 - North: enable climate friendly alternatives to become competitive with fossil fuels
 - South: make modern energy services affordable

WESS: Key messages

- An Investment-led approach for both goals
- Investments must be front-loaded, given danger of lock-in and importance of scale + learning economies for technology leapfrogging
- Strategic public investment to crowd-in private investment through integrated policies
- Concentrate the international transfers (finance + technology) on the big push

Why Focus on Energy?

Contribution to human progress

Energy access

- Strongly correlated with HD indicators
- 3-4 fold expansion needed in developing countries
- Affordability (PCI, Energy share, HDI)

Over 75% emissions

- Rising faster than aggregate emissions, especially developing country because of energy growth (3 to 5%) outrunning rising efficiency
- A sector over which there is consensus, momentum, transparency, and clarity

Scenario characteristics

(34 scenarios, IPCC/WEC)

	1800	2000	∆f	2050	Δf
Population (billion)	1	6	x6	10	x1.6
GDP (trillion 1990 \$)	0.3	30	x100	85-11 0	<x3-x4< td=""></x3-x4<>
Primary energy (EJ)	13	420	x30	600-1,040	x1.5-x2.5
CO ₂ emissions (GtC)	0.3	6.4	x20	5- 15	<x1-x3< td=""></x1-x3<>
Mobility (km/person/day)	0.04	40	x1,000	120-160	x3-x 4

World Energy Council, 2004

Energy Consumption (kcd)

2 1

Country	Final	Industry %	TPES	Electricity
US	167.07	17.84	246.62	39.01
Germany	98.09	22.47	134.84	20.39
Sweden	122.77	34.73	180.03	45.67
Korea	95.71	27.95	142.83	21.12
China	29.19	43.44	45.63	4.61
India	10.87	28.79	16.25	1.61
Brazil	30.39	39.88	37.73	6.41
Ghana	10.23	15.35	13.16	0.79
Tanzania	13.21	10.98	16.79	0.19
Bangladesh	4.11	15.09	5.13	0.42

Energy (kcd), GDP (\$), Prices (c/kWh)

Region	TPES	Electricity	Prices	PCGDP
World	55	6.8 (1.8)	3-30	8,579
OECD	174	25.6 (6.6)	10-20	39,345
China	45	5.3 (0.7)		2,770
India	16	1.3 (0.3)	4	1,010
Africa	16	1.6 (0.4)	5+	1,082
Brazil	38	6.4 (1.2)	9.3	7,350
Korea	143	21.1 (3.0)	9.8	21,530
Russia	145	15.9 (1.9)		9,620

What is Affordable Where?

Income \$/cap/day	Energy Budget	Affordability kcd at prices (cents/kWh)		
	10%	6	10	20
India (\$2)	\$0.20	3	2	1.0
Egypt (\$5)	\$0.50	8	5	2.5
China (\$7)	\$0.70	12	7	3.5
Peru (\$10)	\$1.00	17	10	5
Croatia (\$30)	\$3.00	50	30	15
OECD (\$100+)	\$10.00	166	100	50

How Developing Countries Cope?

- Exclude: Limited access to modern energy
- Use Nature: inefficient but cheap biomass
- Regressive: Energy expenditure share falls with income (2- 30%, median 10%)
- Quality: e.g., cheaper buses, appliances, building materials
- Targeted Subsidies: block tariffs, low diesel and kerosene prices

Climate and Development

- Pressure on developing countries to mitigate by some calculations more than developed countries.
- Challenge is to reconcile this demand with the need to maintain growth
- Two approaches:
 - Sovereign commitments: The Adjustment Model
 - Joint commitment: The Investment Model

Trade-offs in reductions for Annex I and Non-Annex I emissions for different stabilization levels

Source: den Elzen and Hohne, Climatic Change Policy, 2008.

reduction from baseline in non-Annex I in 2020

IPCC

Strategy Under Two Alternatives

- Sovereign Commitments: The unifying strategy under this approach is to raise conventional energy costs (by raising carbon costs (carbon tax or cap and trade).
- Joint commitment: Since developing countries need to lower the costs of energy especially for low income groups to address energy poverty and HD, the unifying strategy is the promotion of investment.

Green Growth for All

- Environmental Investment as Driver: Enable developing countries to leapfrog—not "pollute first clean up later".
- Set common targets for renewable energy investment costs (\$1/W!)
 - How to lower costs
 - How to make renewable energy affordable
- Global partnership on RE

Global Partnership

- Elements of Successful Partnerships
 - Common and shared goals
 - Demonstrable results
 - Time bound commitments
- Elements of several (though not all) climate related proposals
 - Separate but equal goals
 - Vague relations between efforts and results
 - Open ended commitments

The Global Feed in Tariff Approach

- Definition of feed in tariffs policy
 - Guarantee that any renewable energy generated will be purchased ("fed into") by the power grid at given rates (tariffs), different for different technologies, and declining in future years
- Over 50 countries have such policies
- In developing countries, low final energy prices require subsidies, but these are constrained by limited public resources
- A global regime will supplement national commitments with global resources

Advantages

- Common and shared goals
 - Renewable addresses economic and human development goals as well as climate objectives
 - Global subsidy pays only incremental costs
 - Reduction in unit costs helps both North and South
- Demonstrable results
 - Output based funding: payment is made only when renewable energy is delivered to consumers
- Time bound commitments
 - As unit costs fall (depending on how quickly scale is ramped up) and incomes rise, subsidy disappears

How to Fund the Program?

- There is broad agreement over the need to scale up existing funds and combine with innovative new sources of financing. Options include:
 - Official development assistance
 - Carbon credits (but need higher emissions commitments to bring about deeper cuts)
 - International taxes (e.g., on financial speculation, aviation, or a progressive global levy on incomes)
 - Reallocation of existing spending

Technologies with Rapidly Declining Costs will Move Fastest

	2006-10	2011-20	2021-30
Biomass	5%	5%	5%
Geothermal	5%	5%	5%
Large Hydro	1%	1%	1%
Small Hydro	1%	1%	1%
Solar PV	17.5%	15%	10%
Solar thermal	13%	10%	7.5%
Tidal /Wave	15%	12.5%	10%
Wind onshore	0%	6.5%	5%
Wind offshore	0%	20%*	15%*

Partnership for Green Growth

- Global Feed-in-Tariffs: Support for all technologies, and poor consumers. A fund of \$100 bn annually 2010-20. Channeled through energy systems on the basis of output delivered.
- Global Climate Corps: Patterned on the Civilian Conservation Corps during the New Deal and the Peace Corps from the 1960s, a cadre of professionals to support energy efficiency and renewable energy initiatives
- National Support: Patterned on the Green Revolution, support for institutions of research, extension, credit, and inputs provision in the energy sector.

Thank you

World Economic and Social Survey 2009: Promoting Development, Saving the Planet

Please visit the following websites: UN-DESA www.un.org Research papers, policy briefs, others *Acknowledgements:*

UN system contributions, especially DPAD, DSD, FfDO, FoFO Imran Habib Ahmed, Tariq Banuri, Richard Kozul-Wright, Manuel Montes, David O'Connor, Robert Vos and many others