The Potential of Tidal Energy for Small Island Developing States (and other states, as well)

by Scott Anderson, PhD

Coordinator, The Tide-Energy Project Near the Mouth of the Amazon

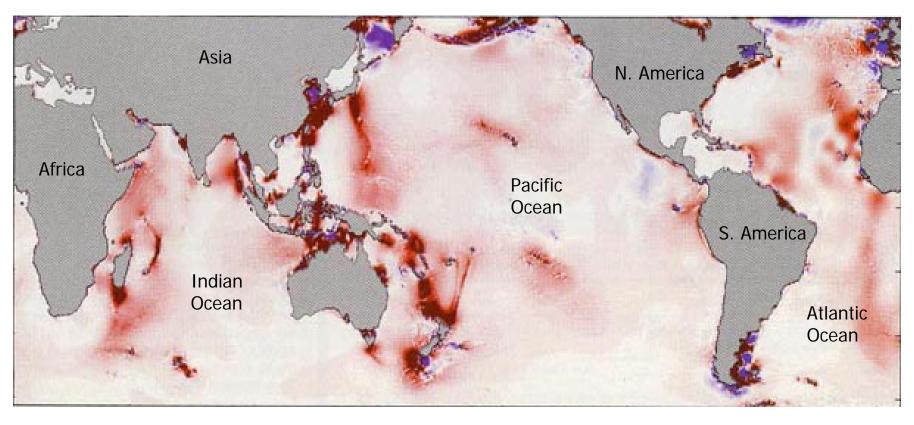
There are four basic questions you may have about Tidal Energy:

There are four basic questions you may have about Tidal Energy:

- 1. Does my country have Tide-Energy potential?
- 2. Can Tidal Energy be captured in a simple, inexpensive way?
- 3. How can we evaluate our Tide-Energy potential?
- 4. Can we get technical assistance to make an initial evaluation?

1. Does my country have Tide-Energy potential?

1. Does my country have Tide-Energy potential?

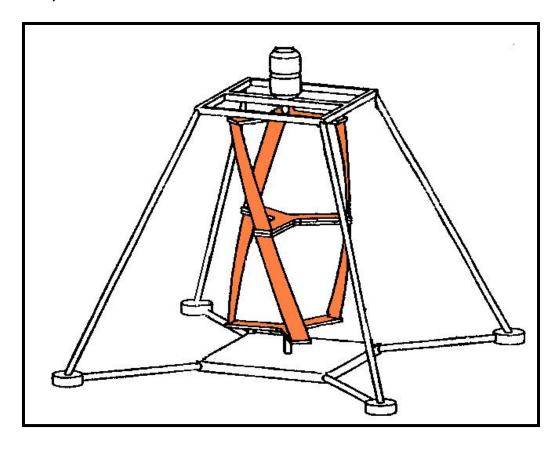

Examine the following map

and determine if your country is in a red area

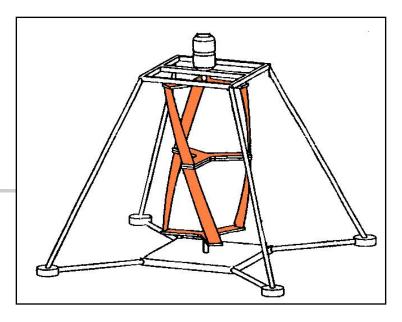
with more intense Tidal Energy.

Worldwide distribution of Tidal Energy

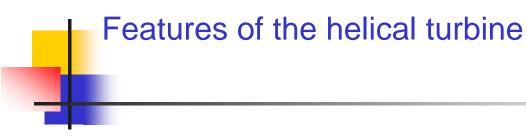
Red areas in the ocean have the most intense Tidal Energy.

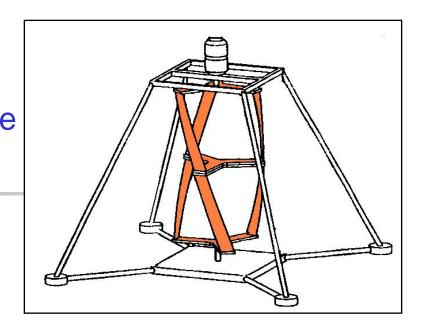


2. Can Tidal Energy be captured in a simple, inexpensive way?

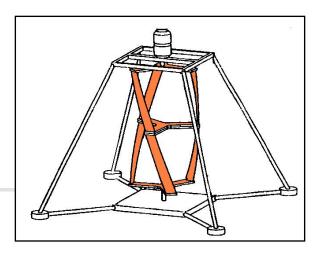

2. Can Tidal Energy be captured in a simple, inexpensive way?

Yes, with a helical turbine



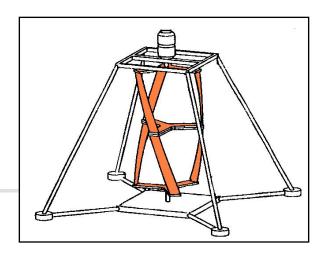


- designed for hydroelectric applications in <u>free-flowing</u> water
- does <u>not</u> require expensive dams that can harm the environment



- operates in ocean, tidal, and river <u>currents</u>
- the <u>faster</u> the current,
 the <u>more</u> energy that can be captured

This is very important!


The helical turbine

But, how well does it work?

And how much does it cost?

- it is very efficient: 35%
- the blades are easy to manufacture:

1 blade costs about US\$ 100 x 6 blades per turbine

Note: the helical blades are manufactured by:

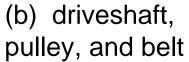
GCK Technology, Inc., San Antonio, Texas, USA

Disclaimer: the presenter has <u>no</u> financial interest whatsoever

in this company or in the sale of these blades.

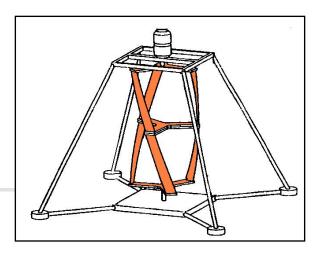
"If I can find a better technology, I will use it."

Easily built:



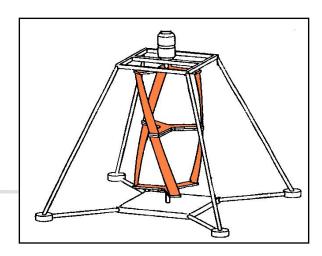
The skilled carpenter and mechanic (above) and a local welder built all of the equipment necessary to mount the blades and generate electricity.

A complete generating system



(c) automotive alternator to charge batteries

(a) 6-blade helical turbine



Locally built:

- About 80-90% of a Tide-Energy station can be built using <u>locally available</u> labor, materials, and equipment.
- Only the technically refined helical turbine blades are outside components.

Benefits:

- Energy production: 120 A-h/day
- Sufficient to meet basic needs of <u>10 households</u> at World Bank and Brazilian government standards for rural, solar electrification projects. //

Using tidal energy is site-specific.

That is, the characteristics of each potential tide-energy site are probably <u>different</u>.

Therefore, each site should be evaluated <u>individually</u>.

Two key factors about a site:

- the location of the site in relation to the user
- the speed, duration, and frequency of the tidal current at the site

These two factors should be studied in that order.

Step 1 – select the better Tide-Energy sites

One key consideration regarding site location:

Energy stored in batteries does not travel well or last long.

So, the better Tide-Energy sites will be:

- close to users
- or convenient for them to reach.

How can we select the better tide-energy sites?

- use local knowledge
- use maps and charts

Persons with extensive knowledge of the people <u>and</u> the waters in an area may be able to select the best potential tide-energy sites merely with the aid of maps and charts.

If so, Step 1 can be completed quickly and inexpensively. //

Step 2 – measure the tidal current at the better sites

Key features to evaluate the tidal current at a site:

- How fast? meters per second
- How long? hours per day
- How often? days per month

In order to generate electricity effectively with the helical turbine, the flow of water at a site must be at least:

1.5 meters per second, or 3 knots.

A significant length of time with that minimum flow might be:

- on the order of 6 to 12 hours per day
- for more than 2 to 3 weeks per monthly tide cycle.

How can we measure tidal current velocity, duration, and frequency?

With <u>local labor and patience</u> you can make an initial evaluation by using very simple equipment.

Necessary equipment:

- (1) bottle weighted so only the neck is visible floating above the water;
- (2) a line to attach securely to the bottle;
- (3) a tape to measure the length of the line; and
- (4) an inexpensive digital watch with a stopwatch feature.

How can we measure and calculate the speed of the tidal current?

From a fixed position, put the bottle in the current and count the number of seconds until the bottle reaches the end of the line.

Then calculate:

```
Length of line in meters
----- = meters per second
Number of seconds
```


How many measurements in the field are needed?

Because the speed of the tidal current varies by day, week, and month, a number of measurements will be necessary.

To make an initial evaluation of the tidal current at a site, the speed of the current should be measured at least:

every 15 minutes during a tide cycle (12 hours), once a week, for three months.

That would mean 13 days of measuring, spread over 3 months. Is that do-able for you?

This would conclude Step 2. //

With this information it should be possible make an initial evaluation of the Tide-Energy potential of the site.

If the site has sufficient Tide-Energy potential, then it might be of interest to you to proceed on to the next stage, that of a <u>pilot project</u>. //

Three main points

The capture of Tidal Energy
 using helical turbine technology can be done
 in a <u>simple</u>, <u>inexpensive</u> way,
 using much local labor, material, and
 equipment.

Three main points

- 2) But, before implementing Tide-Energy technology, each Tide-Energy site <u>must</u> be evaluated in terms of:
- its location in relation to users
- the speed, duration, and frequency of tidal current at the site.

Three main points

3) This initial evaluation can be done <u>inexpensively</u> using local labor and resources in just a few months.

4. Can we get technical assistance to make an initial evaluation?

4. Can we get technical assistance to make an initial evaluation?

Yes. Insofar as my time allows, I would be pleased to assist (via e-mail) anyone interested in making initial Tide-Energy site evaluations.

There would be no charge for this. Good Luck.

Scott Anderson

sdand@bellsouth.net

+1 (352) 376-0799 / 246-8246 (mobile)