

EGM on Green Economy for Sustainable Development Goals National Implementation of Low Carbon Development Jeju city, Republic of Korea, 13-15 2018

Collaborative approaches to Green Economy of Industrial Sector: Eco-Industrial Park case

presented by Mi Hoon JEONG

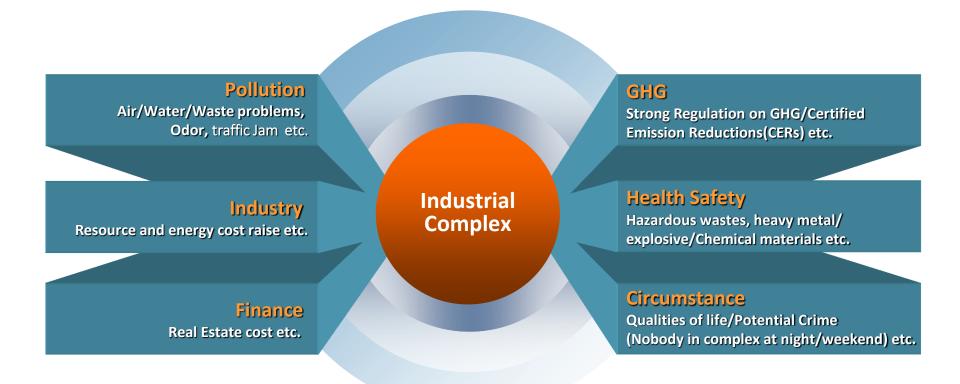
14 March, 2018

Industrial Locations

Industrial locations refer to spaces where industrial activities are performed

- <u>Planned Locations</u>: Industrial locations developed by governments, public organizations or private enterprises in accordance with plans by selecting the locations with excellent conditions for the purpose of establishing and promoting a cluster factories

- <u>Unplanned Locations</u> - Industrial locations which are located at the areas other than industrial complexes and purchased and individually approved as factory sites according to individual enterprises' needs and intentions including business conditions, geographical factors and land prices

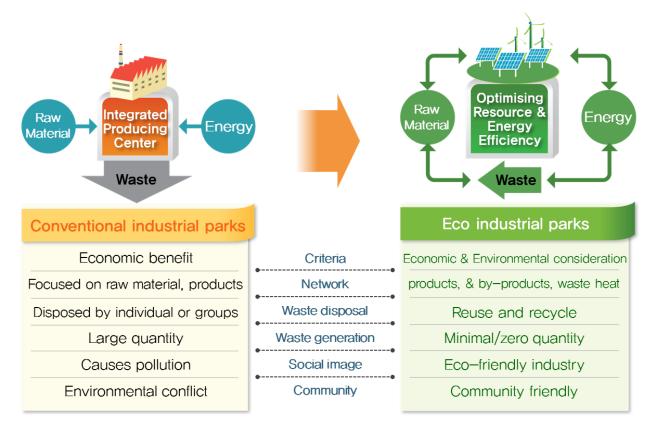

Purposes of Industrial Park Development

Systematic operation of the national land development programs including the industrial park development program

- 1) Regional development (UK) developed countries
- 2) Industrialization (S. Korea) successfully achieved industrialization in a short time through industrial park development developing countries

(Source: Korea Industrial Complex Corporation (KICOX))

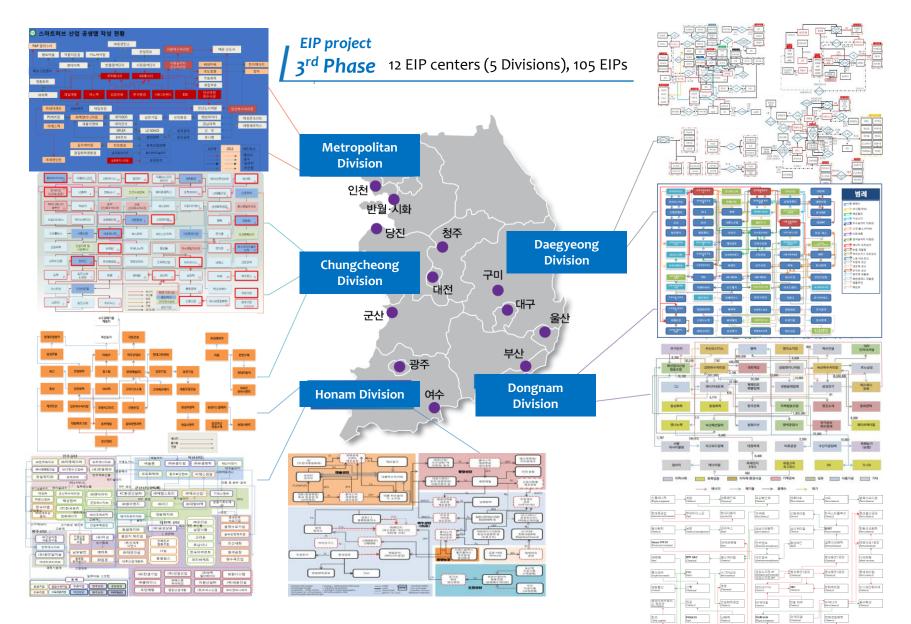
Problems of Industrial Complex


o Industrial complexes: Complexes accommodating factories, industrial facilities and backward support facilities (such as residential and healthcare facilities)

Source: Dr. Dukgyu Han / KICOX

Circular Economy and Korean Eco-Industrial Park Initiatives

EIPs?

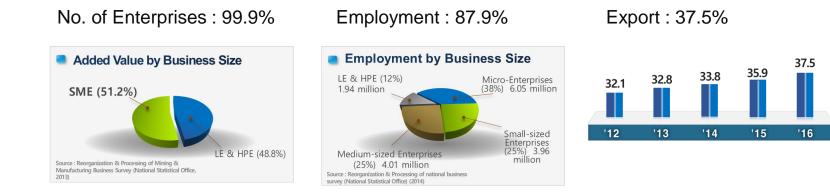

Environment friendly industrial parks whose mission is to maximize resource efficiency and to minimize environmental concern by utilizing by-products from A company for resources/energy to B company

(EIP case) - Denmark Kalundborg

(EIP case) Korea EIP - Industrial Symbiosis maps

(EIP case) Korea EIP – Outcomes (as of 2016)

For 11 years, 1,831 companies participated,


66.2% (235) among 355 feasibility studies supported by EIP program went into businesses

Economic effects	Cost cut from Raw Material Purchase & Waste Treatment Added Revenue from New Product Sales	Cost cut Revenue Sum	KWR 943 billion KRW 1,479 billion KRW 2,423 billion
Environmental effects	Energy Saving (reduction of energy consumption) Reduction of Greenhouse Gas Reduction of Waste Discharge Reduction of waster consumption (Water saving) Reduction of SOx, Nox emission	Energy CO, By-product Water Air	 1.73 million toe 8.54 million ton 6.85 million ton 11.09 million ton 1.24 million ton
Social effects	Promotion of new investment to recycle facility Job Creation	Investment Job Creation	KRW 761.3 billion 992 persons

*KRW 1 billion = USD 0.92 million USD 1 million = KRW 1.08 billion (March-02- 2018)

Small and Medium-sized Enterprises (SMEs)

- (Source: Improving Energy Efficiency in Industrial Energy Systems) **SMEs**
- "Industrial SMEs represent more than 99% of the total aggregated number of companies in most countries.
- (EC 2007) In the EU-25, some 23 million SMEs provide around 75 million jobs.
- (European Commission 2011) SMEs provide two out of three of the private sector jobs and contribute to more than half of the total value-added created by businesses in the EU. Nine out of ten SMEs are actually micro enterprises with less than ten employees."

Status of Korean SMEs (Source: Korean Ministry of SMEs and Startups)

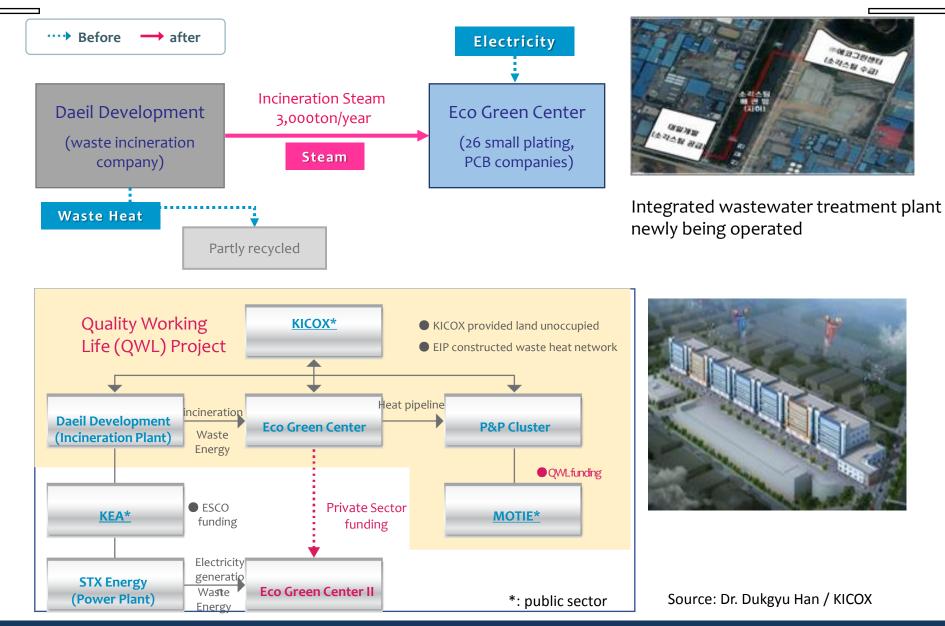
SMEs and Energy/Resource Efficiency

- Some Challenges
- A lack of knowledge and information about new and modern technologies and measures in the field
- A little investment capital for research and development as well as buying new technologies.
- Limitations on Economies of Scale in resource circulation and industrial symbiosis
- Energy efficiency measures for SMEs (Source: Improving Energy Efficiency in Industrial Energy Systems)
- dominantly support processes for non-energy intensive industries

Measures related to Support processes	Heavily capital-intensive production processes
The processes needed to support the production processes	The processes needed to produce products
but not directly needed for production	
Soderstrom(1996) defined	
(11 production processes) decomposition, mixing, cutting, joi	(7 support processes) lighting, compressed air, ventilation,
ning, coating, forming, heating, melting, drying/concentratio	pumping, space heating and cooling, hot tap water, and in
n, cooling/freezing, and packing	ternal transport
-Implemented at an operational level	More closely concern Strategic activities
-Such as ventilation, space heating, lighting	

<Practice 1> Energy Efficiency for Surface Processing Industry

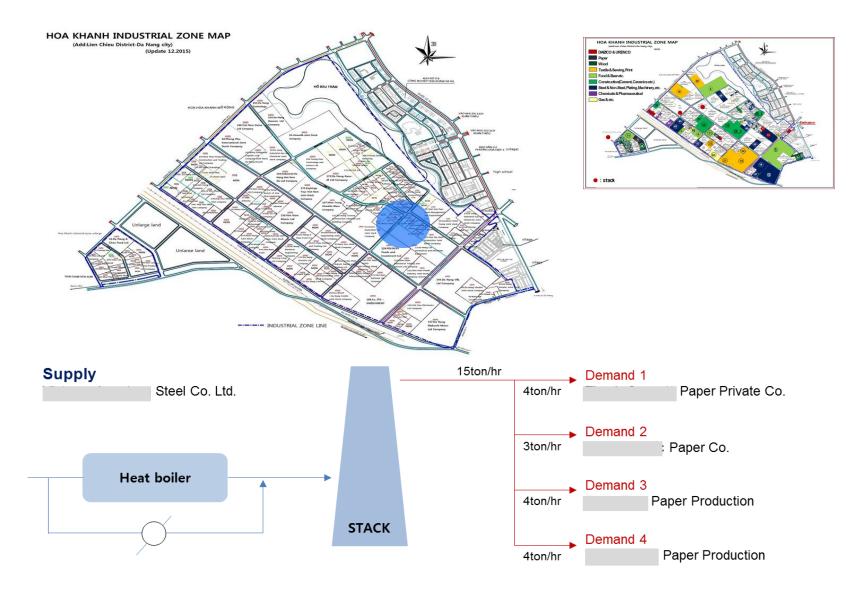
- Eco-Industrial Park project (Korea)


Background

- 17 plating clusters in Ansan/Siheng Smarthub parks (222 enterprises In 2010), Electric energy efficiency is low (37%)
- Reduction of production cost and enhancement of company competitiveness by co-operation of environmental treatment facilities based on resource conversion through collecting of plating and PCB industry, utilization of alternative energy of electric power, establishment of fire prevention and clean process production

Source: Dr. Dukgyu Han / KICOX

<Practice 1> Energy efficiency Surface Processing Industry (continued)


ASEM SMEs Eco-Innovation Center

<Practice 2> Utilizing Waste Heat of Dyeing Industry — Eco-Industrial Park project (Korea)

Source: Dr. Dukgyu Han / KICOX

> Identified Potential Case : Steel company to neighboring paper companies (Vietnam)

Implications

- Economies of Scale
- Facilitator
- Creating Success stories and dissemination
- Government and International Societies' support

Thank You for Your Attention.

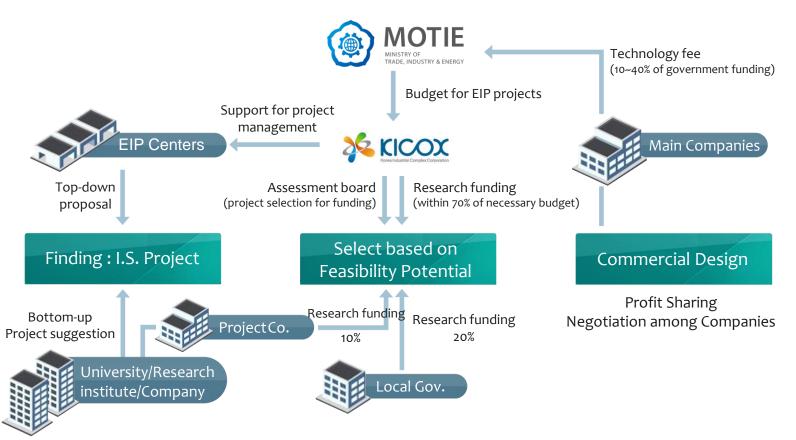
Mi Hoon JEONG

Contact: mihoonj@aseic.org

ASEM SMEs Eco-Innovation Center

<Annex> Planned Locations vs. Unplanned Locations

Items	Planned Locations	Unplanned Locations
Strength	 Diverse tax and financial support Easing of regulations on building area ratios and floor area ratios Favorable SOC conditions including industrial infrastructure 	 Acquisition of lands at lower prices Timely selection of locations at right places Easier disposition and expansion of factory sites
Weakness	 Difficulties in timely acquisition of lands at right places Higher prices compared to unplanned locations Restrictions of types of businesses of resident enterprises 	 Complicated approval and permission procedures related to factory establishment Lack of diverse incentives including tax support Lack of support facilities like SOC, educational and cultural facilities
Opportunities	 Minimization of environmental problems (clustering of factories) Synergy effects like promotion of clusters Job creation and ripple effects (combined complexes) 	 Easing of regulations on corporations Reinforcement of local governments' support measures Easing of regulations on locations
Threat	 Oversupply amid easing of regulations Increase of financial costs for long-term residency Lack of flexibility due to fixed locations 	 Instability in real estate markets (fluctuations in land prices) Increase of civil complaints about factory establishment


(Source: Korea Industrial Complex Corporation)

<Annex> EIP project contributors(participants) in Korea

✓ Funding Source

Central Gov.(70%) & Local Gov.(20% : matching), Private Co.(10% : technology fee)

Stakeholders

<Annex> International Efforts of Eco-Industrial Park & Industrial Symbiosis

Basic EIP (Korea EIP project)

R&D based industrial symbiosis focusing on energy, water, by-products circulation in/for industrial parks

- Economic effects (cost cut, revenue increase), Waste/wastewater reduction, GHG reduction, Job creation and related new investment

Industrial Symbiosis in industrial parks and also elsewhere (urban, orchard..)

- Industrial symbiosis not only limited to energy, water, material resources issues
- Industrial symbiosis not only limited to for industrial parks
- Eco-Industrial Park and Urban symbiosis

Sustainable Industrial Zone

- The basic EIP component and also other sustainable issues in Industrial Parks
- ex) guidelines, industrial competitiveness, renewable energy, energy efficiency, waste management, water management, smart factories, other targeted issues

<Annex> Data survey for Industrial Zone level Comprehensive Assessment

<Examples of necessary data for data survey>

- ① Zone layout, zone's industrial overview
- ② Energy, water, resource supply system
- (3) Wastewater and solid waste treatment system
- ④ Individual companies' information
 - production, resource consumption, discharge

<Some Criteria for selecting target companies>

- 1) High energy/water/resource consumption
- Association of similar industries
- ③ Facilities affecting the zone level such as waste collecting and treatment, wastewater treatment system, power plant and incineration Plant

		Basi	c Informati	on			Waste					
Company name		Address			Name	Amount (ton/yea	Component	Self- disposal (ton/year)	Consignment Processing (ton/year)	Disposal Cost (VND)		
Contact person	Contact nu	mber	Industry	Main product		Number of Employee						
			w material									
Name	Amount	Ur		Price	Use							
Name	Amount	01	iit	Price	Use							
							Wastewater					
					-		Water con (m ³ /day)	consumption Wastewater Component Discharge (m ³ /day)	t	Sludge Amount (m ³ /year)		
			Product		_							
Name	Amount	Ur	lit	Price	Use							
Electricity												
Steam												
Hot water												
		E	nergy Use									
Туре	Amount	Ur	nit	Price	Use	2						

Energy Use					
Туре	Amount	Unit	Price	Use	
Coal					
Oil					
Gas					
Electricity					
Others					

< data survey form >