IPCC Guideline Vol. 5 (Waste)

Greenhouse Gas Inventory System Training Workshop

10-13 September 2018, Bangkok, Thailand

Chris Godlove

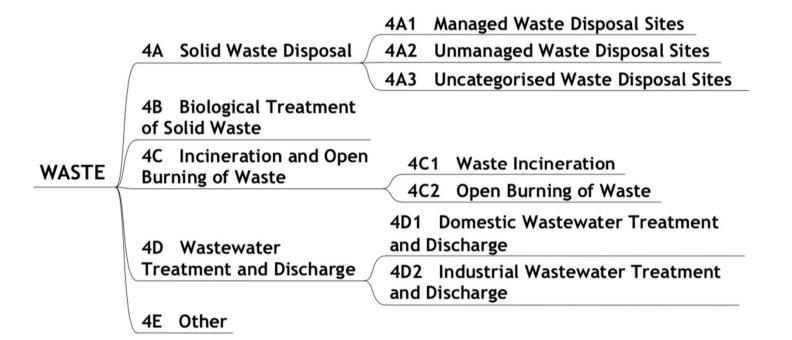
THINKCITIES Consulting

Training objective

"To reduce GHG emissions by establishing a transparent and reliable GHG inventory system to monitor and verify the current state of emissions. The GHG inventory system provides a basic approach in organizing monitoring, reporting, and verifying (MRV) procedures in each country."

Presentation preview

- 1. IPPC Solid Waste emissions guidelines and estimation
- 2. IPPC Waste model and sample outputs
- 3. Biological treatment, burning of waste, wastewater guidelines
- 4. Projections and linkages to NDCs
- 5. MRV for the waste sector
- 6. Tools and resources
- 7. Conclusions



2006 IPCC Guidelines for National Greenhouse Gas Inventories (Waste)

Waste Generation, Composition and Management Data

- Solid Waste Disposal
- Biological Treatment of Solid Waste
- Incineration and Open Burning of Waste
- Wastewater Treatment and Discharge

Waste Sector Overview

Estimates emissions of:

- Carbon dioxide (CO2)
- Methane (CH4)
- Nitrous Oxide (N2O)

Global warming potential:

- CO2 = **1** (reference)
- CH4 = 34
- N2O = 298

CH4 emissions from solid waste disposal sites (SWDS) are typically the largest source in the Waste sector.

- Household waste
- Garden (yard) and park waste
- Commercial/institutional waste

TABLE 2.1 MSW GENERATION AND TREATMENT DATA - REGIONAL DEFAULTS									
Region MSW Generation Fraction of MSW disposed (tonnes/cap/yr) Rate ^{1,2,3} MSW disposed to SWDS Fraction of MSW MSW management incinerated composted unspecified ⁴									
Asia									
Eastern Asia	0.37	0.55	0.26	0.01	0.18				
South-Central Asia	0.21	0.74	_	0.05	0.21				
South-East Asia	0.27	0.59	0.09	0.05	0.27				

EQUATION 3.1 CH₄ EMISSION FROM SWDS

$$CH_4 \ Emissions = \left[\sum_{x} CH_4 \ generated_{x,T} - R_T\right] \bullet (1 - OX_T)$$

Where:

 CH_4 Emissions = CH_4 emitted in year T, Gg

T = inventory year

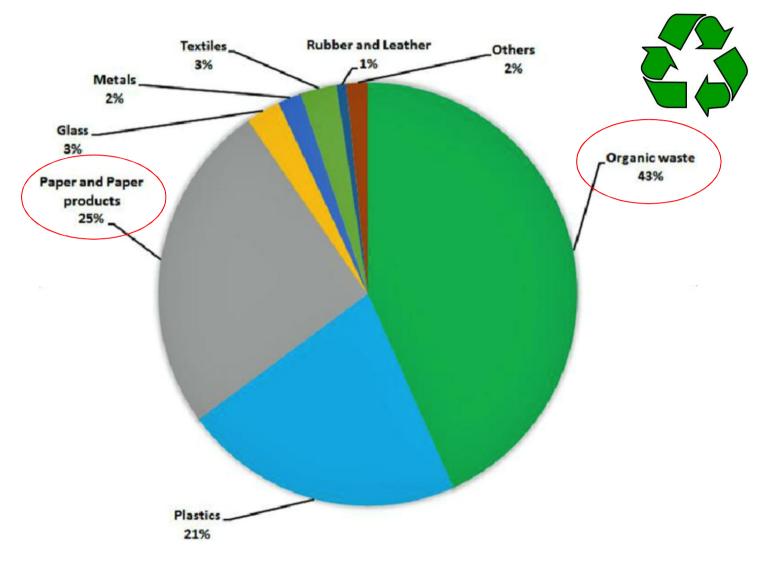
x = waste category or type/material

 R_T = recovered CH₄ in year T, Gg

 OX_T = oxidation factor in year T, (fraction)

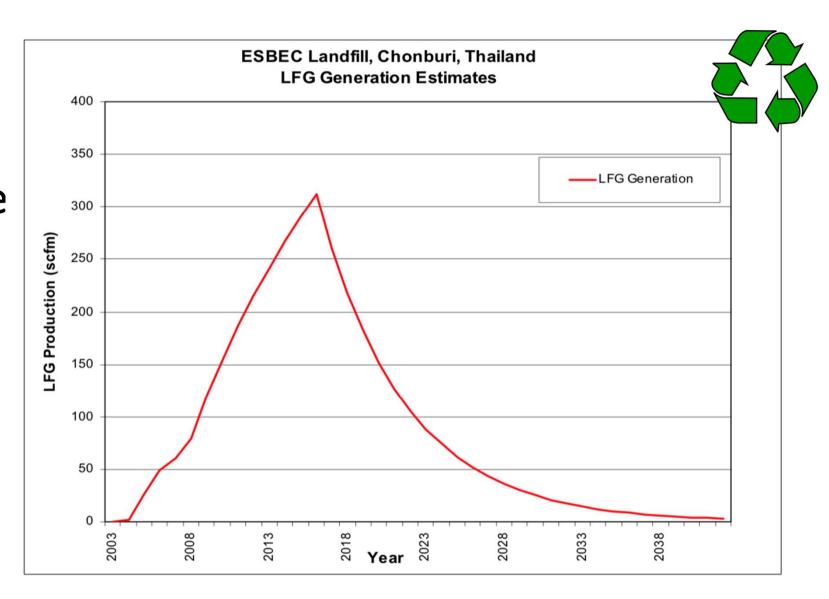
CH4 generated is estimated on the basis of the amount of **Decomposable Degradable Organic Carbon** (**DDOCm**) which is the part of the organic carbon that will degrade under the anaerobic conditions in SWDS.

Waste composition


<u>Default data provided for:</u>

- 1. food waste
- 2. garden (yard) and park waste
- 3. paper and cardboard
- 4. wood
- 5. textiles
- 6. nappies (disposable diapers)
- 7. rubber and leather
- 8. plastics
- 9. metal
- 10. glass (and pottery and china)
- 11. other (e.g., ash, dirt, dust, soil, electronic waste)

MSW characteristics of waste generated in 2012


Kathmandu, Nepal

Source: ADB 2013

ESBEC Solid Waste Disposal Site

Chonburi, Thailand

Source: Global Methane Initiative, EPA LandGem

IPCC 2006 Waste Model

- ✓ Directed to countries with limited data on waste disposal
- ✓ Estimates GHG emissions over a time-series, using the first-order decay model
- ✓ Facilitates comparison of estimates between countries
- ✓ Permits assessment of impacts of different waste management and emission mitigation practices

IPPC Waste Model: Parameters - waste input

I							
Parameters	Country	Thailand		*			
	Region	Asia- So	utheast		▼		
Please enter parameters in the yellow cells. If r Help on parameter selection can be found in th			e, copy the IPC	CC default value.		_	
	IPCC defa	ault value	Countr	y-specific parar	neters	1	
	100110110110110110110110110110110110110	J. 10 / 50 / 100 / 10 / 100 /	Value	Reference an	d remarks		
Starting year		1950	1950				
					Asia- S	outheast	-
DOC (Degradable organic carbon)	Waste b	y comp(+			Asia: Ea	astern	
(weight fraction, wet basis)	Waste b	y composi			Asia: So	outh-central	
Food waste	CORP.	ste data o	0.15		Asia- S	outheast	
Garden	U.18-U.ZZ		0.2			Vestern & Middle East	
Paper	0.36-0.45	0.4	0.4		1	1	
Wood and straw	0.39 0.46	0.43	0.43		<u> </u>	ļ	
Textiles	0.20-0.40	0.24	0.24				
Disposable nappies	0.18-0.32	0.24	0.24		j		
Sewage sludge	0.04-0.05	0.05	0.05				
					<u> </u>		
Industrial waste	0-0.54	0.15	0.15				
DOCF (fraction of DOC discimilated)		0.5	0.5				
DOCf (fraction of DOC dissimilated)	-	0.5	0.5			1	

IPPC Waste Model: Parameters – climate selection

Methane generation rate constant (k)	Wet tem	perate 🚽		
(years ⁻¹)	Dry tem			
Food waste	Wet tem	nerate	0.185	
Garden				
Paper		- Dry tropical		
Wood and straw	Moist ar	nd wet tro	0.03	
Textiles	0.05-0.07	0.06	0.06	
Disposable nappies	0.06-0.1	0.1	0.1	
Sewage sludge	0.1-0.2	0.185	0.185	
			_	
Industrial waste	0.08-0.1	0.09	0.09	

MSW activity data

Enter population, waste per capita and MSW waste composition into the yellow cells. Help and default regional values are given in the 2006 IPCC Guidelines. Industrial waste activity data must be entered separately starting in Column Q.

44%

0%

13%

10%

3%

0%

31%

IPCC Regional defaults

IPPC	
Waste	
Model:)

MSW activity data

270					74 /0							10070
					Cor	nposition	of waste g	oing to so	iid waste	disposal s	ites	
Year	Population	Waste per capita	Total MSW	% to SWDS	Food	Garden	Paper	Wood	Textile	Nappies	Plastics, other inert	Total
	millions	kg/cap/yr	Gg	%	%	%	%	%	%	%	%	(=100%)
1950	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1951	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1952	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1953	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1954	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1955	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1956	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1957	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1958	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1959	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1960	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1961	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1962	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1963	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1964	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1965	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1966	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1967	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1968	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1969	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1970	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1971	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1972	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1973	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1974	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1975	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1976	1,0	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%

Results

Country

Thailand

Enter starting year, industrial waste disposal data and methane recovery into the yellow cells. MSW activity data is entered on MSW sheet

IPPC Waste Model:

Results

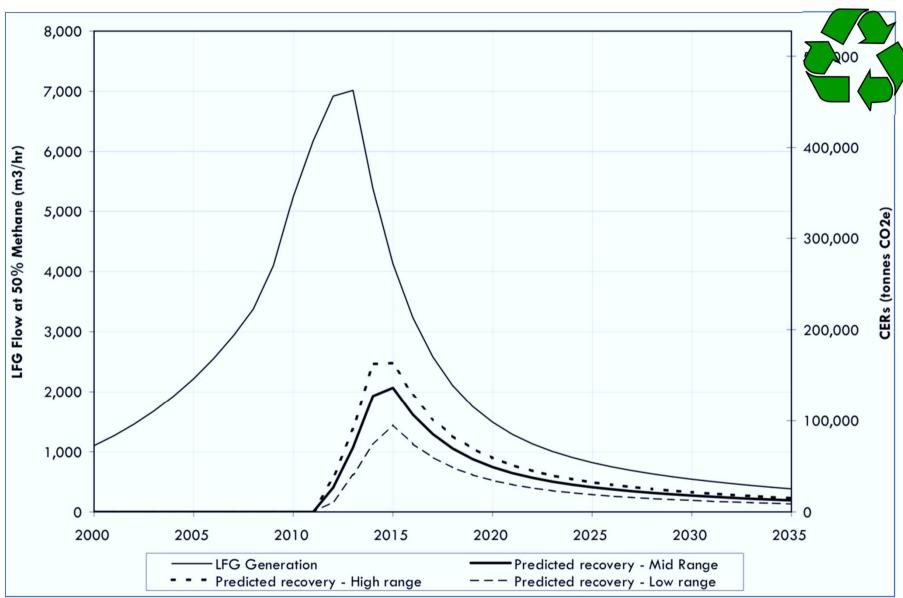
	Methane generated										
Year	Food	Garden	Paper	Wood	Textile	Nappies	Sludge	MSW	Industrial	Total	Methane recovery
	А	В	С	D	Е	F	G	н	J	к	L
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg
	- Og	- Og	- Og	- Og	- Og	- Og	- Og		- Og	- Og	- Og
1950	0	0	0	0	0	0	0		0	0	0
1951	4	0	1	0	0	0	0		2	7	0
1952	8	0	2	1	0	0	0		3	14	0
1953	10	0	3	1	0	0	0		4	20	0
1954	13	0	4	2	1	0	0		5	25	0
1955	15	0	5	2	1	0	0		6	29	0
1956	16	0	6	3	1	0	0		7	33	0
1957	18	0	7	3	1	0	0		8	37	0
1958	19	0	7	3	1	0	0		9	40	0
1959	20	0	8	4	1	0	0		10	43	0
1960	21	0	9	4	1	0	0		11	45	0
1961	21	0	9	4	1	0	0		11	47	0
1962	22	0	10	5	1	0	0		12	50	0
1963	22	0	10	5	1	0	0		12	51	0
1964	23	0	11	5	1	0	0		13	53	0
1965	23	0	11	6	1	0	0		13	55	0
1966	23	0	12	6	1	0	0		14	56	0
1967	23	0	12	6	2	0	0		14	58	0
1968	24	0	13	7	2	0	0		14	59	0
1969	24	0	13	7	2	0	0		15	60	0
1970	24	0	13	7	2	0	0		15	61	0
1971	24	0	14	7	2	0	0		15	62	0
1972	24	0	14	8	2	0	0		15	63	0
1973	24	0	14	8	2	0	0		16	64	0
1974	24	0	15	8	2	0	0		16	65	0
1975	24	0	15	8	2	0	0		16	65	0

- 1	
1	Methane
	emission
/[M = (K-L)*(1-
ı	OX)
-	Gg
Π	
ı	0
1	7
ı	14
ı	20
ı	25
ı	29
ı	33
ı	37
ı	40
ı	43
ı	45
I	47
ı	50
ı	51
ı	53
1	55
1	56
ı	58
ı	59
1	60
١l	61
\I	62
V	63
ı	64
1	65/
ı	6,5
	\

Summary: Default values

- ✓ Climate
- ✓ MSW composition
- ✓ MSW generation
- ✓ MSW management

Other important default values



- Degradable Organic Carbon (DOC) carbon that is accessible to decomposition (Gg C / Gg waste)
- Fraction of DOC that Decomposes (DOC_f) estimate of fraction of carbon degraded and release from site
- Methane Correction Factor (MCF) assigned based on the estimated fraction of waste which decays aerobically and does not produce methane
- CH4 content in Landfill Gas typically 50% CH₄ / 50% CO₂
- Oxidation Factor (OX) reflects amount of CH₄ from site that is converted to oxygen by the soil covering the waste
- Half-life $(t_{1/2})$ time taken for DOC in waste to decay to half its initial mass

CH4
Generation
and
Recovery

Dhapa SWDS

Kolkatta, India

Source: Global Methane Initiative

Other possible GHG sources from solid waste

- Combustion of fossil-derived carbon in incineration systems resulting in the release of CO₂
- Production of CH₄ from anaerobic conditions within composting operations
- Release of nitrous oxide (N₂O) during nitrification in compost piles
- Leakage of CH₄ from AD reactors
- Collection and transportation of waste to transfer and treatment sites (indirect)

Source: 2006. Guidelines for National Greenhouse Gas Inventories, Volume 5-Waste, Geneva, , Switzerland: Intergovernmental Panel on Climate Change.

Biological treatment of solid waste

Composting and anaerobic digestion of organic waste

- Reduced volume in the waste material stabilization of the waste
- Production of biogas for energy use
- End product can be recycled as a fertilizer or soil amendment

Composting

- large fraction of DOC in waste is converted to CO2
- CH4 and N2O can both be formed during composting

Anaerobic digestion

- Biogas (CH4 and CO2)
- N2O is assumed to be negligible

Source: Consultative Group of Experts (CGE) Training Materials for National Greenhouse Gas Inventories (Waste).

Biological treatment of solid waste: CH₄

$$CH_4Emissions = \sum_i (M_i \bullet EF_i) \bullet 10^{-3} - R$$

CH₄ Emissions: total CH₄ emissions in inventory year, Gg CH₄

 M_i : mass of organic waste treated by biological treatment type i, Gg

EF_i: emission factor for treatment *i*, g CH₄/kg waste treated

i: composting or anaerobic digestion

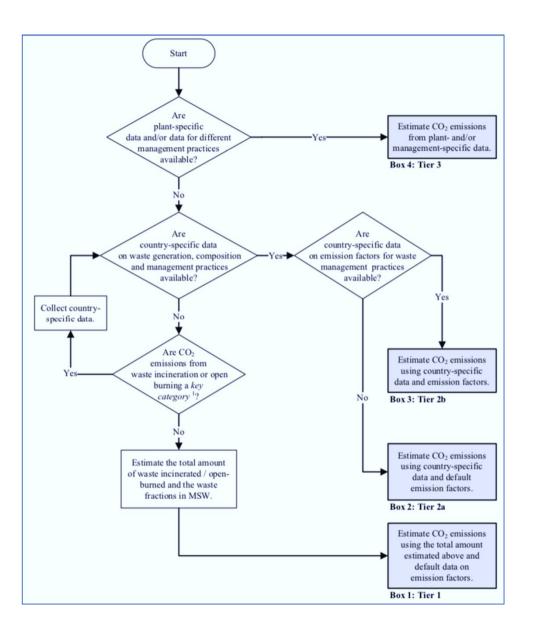
R: total amount of CH₄ recovered in inventory year, Gg CH₄. If the recovered gas

is flared, the emissions should be reported in Waste Sector

Biological treatment of solid waste: N₂O

$$N_2OEmissions = \sum_i (M_i \bullet EF_i) \bullet 10^{-3}$$

N₂O Emissions: total N₂O emissions in inventory year, Gg N₂O


 M_i : mass of organic waste treated by biological treatment type i, Gg

EF_i: emission factor for treatment i, g N₂O/kg waste treated

i : composting or anaerobic digestion

Incineration and open burning of waste

Tier selection decision tree

Estimation of the amount of fossil carbon is the most important factor determining the CO2 emissions as only CO2 emissions of fossil origin (e.g., plastics, certain textiles, rubber, liquid solvents, and waste oil) should be included

Incineration and open burning of waste: CO₂

Method based on total amount of waste combusted

$$CO_2Emissions = \sum_{i} (SW_i \bullet dm_i \bullet CF_i \bullet FCF_i \bullet OF_i) \bullet 44/12$$

CO₂ Emissions: CO₂ emissions in inventory year, Gg/yr

SW_i: total amount of solid waste of type *i* (wet weight) incinerated or open-burned, Gg/yr

dm_i: dry matter content in the waste (wet weight) incinerated or open-burned, (fraction)

CF_i: fraction of carbon in the dry matter (total carbon content), (fraction)

FCF_i: fraction of fossil carbon in the total carbon, (fraction)

OF_i: oxidation factor, (fraction)

44/12: conversion factor from C to CO₂

i: type of waste incinerated/open-burned such as MSW, industrial solid waste (ISW), sewage sludge, hazardous waste, clinical waste, etc.

Incineration and open burning of waste: CO₂

Method based on MSW composition

$$CO_2Emissions = MSW \bullet \sum_j (WF_j \bullet dm_j \bullet CF_j \bullet FCF_j \bullet OF_j) \bullet 44/12$$

CO₂ Emissions: CO₂ emissions in inventory year, Gg/yr

MSW: total amount of municipal solid waste as wet weight incinerated or open-burned, Gg/yr

WF_j: fraction of waste type/material of component **j** in the MSW (as wet weight incinerated or open-burned)

dm_i: dry matter content in the component j of the MSW incinerated or open-burned, (fraction)

CF_i: fraction of carbon in the dry matter (i.e., carbon content) of component j

FCF_i: fraction of fossil carbon in the total carbon of component j

OF_i: oxidation factor, (fraction)

44/12: conversion factor from C to CO₂

j: component of the MSW incinerated/open-burned such as paper/cardboard, textiles, food waste, wood, garden (yard) and park waste, disposable nappies, rubber and leather, plastics, metal, glass, other inert waste

Calculating other emissions and amount of waste open-burned

CH4

$$CH_4Emissions = \sum_i (IW_i \bullet EF_i) \bullet 10^{-6}$$

CH₄ Emissions: CH₄ emissions in inventory year, Gg/yr

IW_i: amount of solid waste of type *i* incinerated or open-burned, Gg/yr

 $\textbf{EF}_{\textbf{i}}$: aggregate $\text{CH}_{\textbf{4}}$ emission factor, kg $\text{CH}_{\textbf{4}}/\text{Gg}$ of waste

10-6: conversion factor from kilogram to gigagram

 i: category or type of waste incinerated/open-burned (MSW, ISW, hazardous waste, clinical waste, sewage sludge, etc.)

<u>N20</u>

$$N_2OEmissions = \sum_i (IW_i \bullet EF_i) \bullet 10^{-6}$$

 N_2O Emissions: N_2O emissions in inventory year, Gg/yr IW_i : amount of incinerated/open-burned waste of type i, Gg/yr EF_i : N_2O emission factor (kg N_2O/Gg of waste) for waste of type i

10-6: conversion from kilogram to gigagram

i: category or type of waste incinerated/open-burned (MSW, ISW, hazardous waste, clinical waste, sewage sludge, etc.)

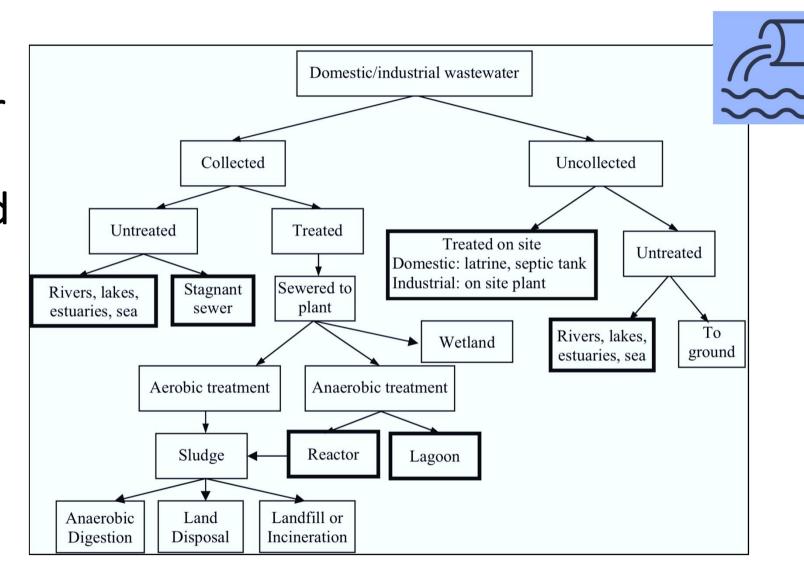
Amount of waste open-burned

$$MSW_B = P \bullet P_{frac} \bullet MSW_P \bullet B_{frac} \bullet 365 \bullet 10^{-6}$$

MSW_B: Total amount of municipal solid waste open-burned, Gg/yr

P: population (capita)

P_{frac}: fraction of population burning waste, (fraction)
 MSW_P: per capita waste generation, kg waste/capita/day


 $\mathbf{B}_{\mathsf{frac}}$: fraction of the waste amount that is burned relative to the total amount of

waste treated

365 : number of days by year

10-6: conversion factor from kilogram to gigagram

Wastewater treatment systems and discharge

Treatment and Discharge Systems and CH4 and N2O Generation Potential - domestic wastewater

	СН₄	AND N ₂	O EMISSION POTENTIALS FOR	TABLE 6.1 WASTEWATER AND SLUDGE TREATMENT AND DISCHARGE SYSTEMS					
Types of treatment and disposal CH ₄ and N ₂ O emission potentials									
		Rive	r discharge	Stagnant, oxygen-deficient rivers and lakes may allow for anaerobic decomposition to produce CH ₄ .					
	ited			Rivers, lakes and estuaries are likely sources of N ₂ O.					
	Untreated	Sew	ers (closed and under nd)	Not a source of CH ₄ /N ₂ O.					
		Sew	ers (open)	Stagnant, overloaded open collection sewers or ditches/canals are likely significant sources of CH ₄ .					
			Centralized aerobic	May produce limited CH ₄ from anaerobic pockets.					
Þ			wastewater treatment plants	Poorly designed or managed aerobic treatment systems produce CH ₄ .					
Collected		reatment		Advanced plants with nutrient removal (nitrification and denitrification) are small but distinct sources of N ₂ O.					
•	Treated	Aerobic treatment	Sludge anaerobic treatment in centralized aerobic wastewater treatment plant	Sludge may be a significant source of CH ₄ if emitted CH ₄ is not recovered and flared.					
									Aerobic shallow ponds
		c t	Anaerobic lagoons	Likely source of CH ₄ .					
		Anaerobic treatment		Not a source of N ₂ O.					
		Anac	Anaerobic reactors	May be a significant source of CH ₄ if emitted CH ₄ is not recovered and flared.					
pa		Sept	ic tanks	Frequent solids removal reduces CH ₄ production.					
Uncollected		Oper	n pits/Latrines	Pits/latrines are likely to produce CH ₄ when temperature and retention time are favourable.					
5		Rive	r discharge	See above.					

Equation to estimate CH4 emissions from domestic wastewater

The steps for good practice in inventory preparation for CH₄ from domestic wastewater are as follows:

- **Step 1:** Use Equation 6.3 to estimate total organically degradable carbon in wastewater (TOW).
- Step 2: Select the pathway and systems (See Figure 6.1) according to country activity data. Use Equation 6.2 to obtain the emission factor for each domestic wastewater treatment/discharge pathway or system.
- Step 3: Use Equation 6.1 to estimate emissions, adjust for possible sludge removal and/or CH₄ recovery and

sum the results for each pathway/system.

EQUATION 6.1

TOTAL CH₄ EMISSIONS FROM DOMESTIC WASTEWATER $CH_4 \ Emissions = \left[\sum_{i,j} \left(U_i \bullet T_{i,j} \bullet EF_j\right)\right] \left(TOW - S\right) - R$

Where:

CH₄ Emissions = CH₄ emissions in inventory year, kg CH₄/yr

ΓΟW = total organics in wastewater in inventory year, kg BOD/yr

s = organic component removed as sludge in inventory year, kg BOD/yr

 U_i = fraction of population in income group *i* in inventory year, See Table 6.5.

 $T_{i,j}$ = degree of utilisation of treatment/discharge pathway or system, j, for each income group fraction i in inventory year, See Table 6.5.

i = income group: rural, urban high income and urban low income

j = each treatment/discharge pathway or system

 EF_i = emission factor, kg CH_4 / kg BOD

R = amount of CH₄ recovered in inventory year, kg CH₄/yr

Default MCF values for domestic wastewater pathways (treatment)

Type of treatment and discharge pathway or system	Comments	MCF 1	Range
Untreated system			
Sea, river and lake discharge	Rivers with high organics loadings can turn anaerobic.	0.1	0 - 0.2
Stagnant sewer	Open and warm	0.5	0.4 - 0.8
Flowing sewer (open or closed)	Fast moving, clean. (Insignificant amounts of CH ₄ from pump stations, etc)	0	0
Treated system			
Centralized, aerobic treatment plant	Must be well managed. Some CH ₄ can be emitted from settling basins and other pockets.	0	0 - 0.1
Centralized, aerobic treatment plant	Not well managed. Overloaded.	0.3	0.2 - 0.4
Anaerobic digester for sludge	CH ₄ recovery is not considered here.	0.8	0.8 - 1.0
Anaerobic reactor	CH ₄ recovery is not considered here.	0.8	0.8 - 1.0
Anaerobic shallow lagoon	Depth less than 2 metres, use expert judgment.	0.2	0 - 0.3
Anaerobic deep lagoon	Depth more than 2 metres	0.8	0.8 - 1.0
Septic system	Half of BOD settles in anaerobic tank.	0.5	0.5
Latrine	Dry climate, ground water table lower than latrine, small family (3-5 persons)	0.1	0.05 - 0.15

Industrial wastewater CH4 emissions

The general equation to estimate CH₄ emissions from industrial wastewater is as follows:

$E \text{QUATION 6.4} \\ \text{Total CH}_{\text{4}} \text{ emissions from industrial wastewater}$

$$CH_4 \ Emissions = \sum_{i} [(TOW_i - S_i)EF_i - R_i]$$

Where:

 CH_4 Emissions = CH_4 emissions in inventory year, kg CH_4 /yr

 TOW_i = total organically degradable material in wastewater from industry i in inventory year, kg COD/yr

i = industrial sector

S_i = organic component removed as sludge in inventory year, kg COD/yr

 EF_i = emission factor for industry i, kg CH_4/kg COD

for treatment/discharge pathway or system(s) used in inventory year

If more than one treatment practice is used in an industry this factor would need to be a weighted average.

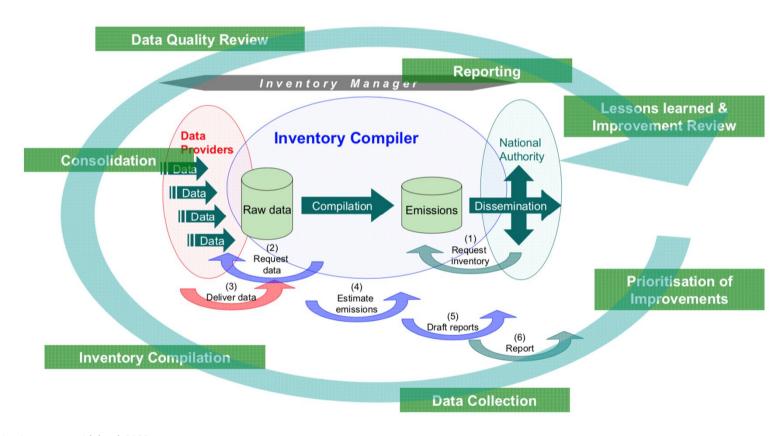
R_i = amount of CH₄ recovered in inventory year, kg CH₄/yr

EQUATION 6.7 N_2O EMISSIONS FROM WASTEWATER EFFLUENT

 $N_2O\ Emissions = N_{EFFLUENT} \bullet EF_{EFFLUENT} \bullet 44/28$

Where:

 N_2O emissions = N_2O emissions in inventory year, kg N_2O/yr


N EFFLUENT = nitrogen in the effluent discharged to aquatic environments, kg N/yr

 $EF_{EFFLUENT}$ = emission factor for N₂O emissions from discharged to wastewater, kg N₂O-N/kg N

The factor 44/28 is the conversion of kg N_2O-N into kg N_2O .

Aspects of Inventory Management

Source: EMEP/EEA emission inventory guidebook 2009

Emissions scenario projections and modeling

Paris Agreement calls on countries to deliver long-term strategies (LTSs) for decarbonization in pursuit of the "well below 2°C" goal.

- Models can assist in the creation of LTS by offering points of engagement with: national leadership, stakeholders, domestic and international audiences
- Models offer way to organize thoughts and understanding implications of alternate pathways, connecting core drivers to possible outcomes
- Models can produce conditional forecasts based on where countries currently are, and what they feel their choices might be

Incorporation of Measurement, Reporting a [2] Verification (MRV)

TYPE OF	MEASUREMENT		REPORTING VERIFICATION ^b			
MRV	Methoda	Data Requirements	TALL ON THE	VERN GATION		
National GHG inventory	■ IPCC Guidelines for National Greenhouse Gas Inventories	 Activity data and emission factor Data requirements associated with calculating emissions from some sources, particularly non-energy sources (i.e., AFOLU), can be significantly more complicated Data from continuous emissions monitoring system (CEMS) where feasible 	■ To the UNFCCC as part of: □ National Inventory Reports for developed countries □ National Communications for developed and developing countries □ Biennial Reports (BR) for developed countries, and Biennial Update Reports (BURs) for developing countries □ Countries may also develop inventories solely for domestic objectives	 Prescribed by UNFCCC— International Consultation and Analysis (ICA) for developing countries, and International Assessment and Review (IAR) for developed countriesd The Paris Agreement sets up a technical expert review process for the information provided by countries 		

Sources: MRV 101: Understanding Measurement, Reporting and Verification of Climate Change Mitigation, WRI 2016

Organizations working on waste and wastewater

SOLID WASTE

- ISWA International Solid Waste Association <u>www.iswa.org</u>
 - CAUES China Association of Urban Environmental Sanitation http://chinagate.cn/english/1950.htm
 - WMAM- Waste Management Association of Malaysia http://www.wmam.org
 - WMRAS Waste Management and Recycling Association of Singapore http://www.wmras.org.sg
 - ICWM Institute of Chartered Waste Managers http://icwm.ac.in
 - InSWA Indonesia Solid Waste Association http://inswa.or.id
 - JWMA Japan Waste Management Association http://www.jwma-tokyo.or.jp
 - KSWM Korea Society of Waste Management http://www.kswm.or.kr/english/html/sub-01.asp
- Climate and Clean Air Coalition (CCAC) Waste Initiative http://ccacoalition.org/en/initiatives/waste
- Global Methane Initiative (GMI) / Landfill Methane Outreach Program (USEPA) https://www.globalmethane.org
- Partnership on Transparency in the Paris Agreement https://www.transparency-partnership.net

WASTEWATER

- International Water Association (IWA) http://www.iwa-network.org
- Water and Wastewater Companies for Climate Mitigation http://wacclim.org

Additional internet resources

- CCAC waste knowledge platform: http://www.waste.ccacoalition.org
- GMI Wastewater Biogas Assessment Technology Tool https://www.globalmethane.org/sectors/technicalgroup.aspx?s=ww
- GMI China Landfill Gas Model https://www.globalmethane.org/partners/country.aspx?country=china&r=true /工作表 (Excel)
- GMI Philippines Landfill Gas Model https://www.globalmethane.org/partners/country.aspx?country=philippines&r=true
- GMI Thailand Landfill Gas Model https://www.globalmethane.org/partners/country.aspx?country=thailand&r=true / คู่มือผู้ใช้งาน (MS Word)
- IPCC CGE Training Materials (GHG inventory software/waste trainings) https://unfccc.int
- IPCC Emissions Factor Database https://www.ipcc-nggip.iges.or.jp/EFDB/main.php
- IPCC Vol. 5 Waste: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html
- USAID GHG Inventories and Accounting http://www.lowemissionsasia.org/what-we-do/ghg-inventories-and-accounting/
- USEPA Landfill Gas Emissions Model https://www.epa.gov/catc/clean-air-technology-center-products#software

Thank you!

Chris Godlove

Principal

Brussels - Belgium

cgodlove@thinkcities.eu
@chrisforclimate | twitter
www.thinkcities.eu