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NANOTECHNOLOGY IN WATER TREATMENT

 KEY MESSAGES
–– Nanotechnology (NT) can cost-effectively treat 

contaminants in water that are untreatable by 
conventionala methods.

–– Adsorbents, disinfectants, catalysts and mem-
branes have the potential to become widely 
applied technologies in developing countries 
if the needs of these countries are reflected in 
the R&D and investment strategies.

–– Challenges formed by risk uncertainty, eco-
nomic inclusion and public inclusion obstruct 
the large-scale application of NT and an equal 
distribution of the related benefits. 

 INTRODUCTION

According to the World Economic Forum (WEF), a de-
cline in the available quantity and quality of fresh water 
is the main global risk that the world society will face 
the coming decade [1]. It is expected that by 2025, 1.8 
billion people will live in countries or regions with ab-
solute water scarcity [2]. The dependent relationship 
between water quality and water availability is thus a 
topic that needs attention. This is especially the case 
for developing countries where fresh water sourc-
es are often contaminated by bacteria, viruses 
and heavy metals, due to inadequate sanita-
tion infrastructures, mining activities and the 
disposal of untreated industrial waste into 
water bodies [2],[3]. Since conventional 
methods are reaching their limits to deal 
with these problems and adequate water 
infrastructures are often lacking in devel-
oping countries, a new solution is needed 
[2],[4],[5]. 

The realization that NT could provide the an-
swer has already been there since the beginning of 
the 2000s, when the technology was formulated as a 
solution to the targets set for clean water in the Millen-
nium Development Goals [6]. However, the large scale 
application of NT in water treatment in both developed 
and developing countries is still hampered by multi-
ple issues, such as the uncertainty regarding the risks 
of nanomaterials (NMs), the difference in involvement 
in the R&D of NT between developed and developing 
countries and global disagreement about regulation 
standards on the usage of NMs [7]-[10]. Nevertheless, 
the potential for NT to address global water concerns is 
still strong [7],[11].

Bacteria, viruses and heavy metals, which cause 1.5 
billion people world-wide to suffer from water-related 
diseases each year, can be treated more efficiently and 
cost-effectively by NT (SDG 3: Good Health and Well-Be-

ing) [7],[12],[13]. In a similar manner, the treatment of 
water by NT can improve the production of agricultural 
crops, by preventing salinization and contamination of 
agricultural soils (SDG 2: Zero Hunger) [12],[14]. Finally, 
NT has the potential to create a new domestic indus-
try in developing countries, which can create new jobs, 
new knowledge and be a standard for creating new wa-
ter infrastructures (SDG 9: Industry, Innovation and In-
frastructure) [12],[15],[16].

Within this policy brief nanotechnologies are de-
fined as devices and systems with a size of 1 to 100 
nanometres (1 billionth of a metre) in at least one 
dimension, which take advantage of the unique 
properties of particles at this scale [17],[18]. How-
ever, one should be aware that there is an absence 
of an internationally recognized working definition 
of NT [19].

 CURRENT STATUS

Although some commercialization of NT water applica-
tions has taken place, the majority is still in the R&D 
phase and upscaling applications is one of the major 

challenges [20]-[22]. R&D mostly takes place in the 
United States, Europe, China, India and to a lesser 

extent in Brazil and South Africa [14],[22],[23]. 
Investments are made by both public and pri-

vate sector, but unfortunately no detailed 
numbers are available [9],[24],[25]. With 

regards to governance, NMs are mostly 
administered through the general regula-
tion on chemical production and distribu-
tion and through existing environmental 

and water regulations [7],[26]. At present, 
amendments are being made to these reg-

ulations to regulate NMs specifically [7],[27]. 
Yet, there is an international debate on wheth-

er this is sufficient or more specific regulations on NMs 
should be implemented [7].

 BENEFITS
Compared to other sectors, NT in water is perceived fa-
vourably due to its societal importance and perceived 
necessity [28]. NMs remove contaminants, bacteria 
and viruses more efficiently due to their increased spe-
cific surface areab, reactivity and dissolution capacity 
and thus contribute to the improvement of current 
disinfectionc, purification and desalination techniques 
[7],[29],[30]. The application of NTs within water treat-
ment leads to reduced use of chemicals compared to 
conventional disinfection techniques (e.g. chlorination 
and ozonation) whose by-products can also have nega-
tive impacts on human health and the environment [7], 
[30]. Because of the low concentrations of emerging 
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pollutants (micropollutants, pharmaceuticals, personal 
care products and hormones) present in wastewater, 
NT solutions for more efficient treatment methods are 
needed [31],[32]. The same applies to industrial waste-
water which is often contaminated with heavy metals 
(e.g. chromium, mercury, lead and cadmium) [30].

Case Study: ‘Drinkwell’ and the first filter that can re-
move arsenic and fluoride from groundwater
NT applied: Polymeric ion exchangersd doped with zir-
conium oxide NPs (adsorbents) which can within a fil-
tration column be attached to wells [35]. 
Contaminant removal: arsenic, fluoride, phosphate and 
lead.
Target group: people who live in affected areas in India, 
Laos, Cambodia, Bangladesh and Kenya.
Technical benefits: robust material, energy-efficient, 
can be re-used and regenerated for years, applicable in 
local context. 
Socio-economic benefits: In comparison to the re-
quired installation for a similar water purification result, 
the NPs are a cost-efficient treatment technology. The 
NPs are used in small decentralized treatment systems 
which don’t require large investments, management 
structures and costly maintenance [34]. The organiza-
tion ‘Drinkwell’ thus empowers villagers to run their 
own plant in a sustainable manner and allows them 
to make small profits [35]. A micro-franchise model 
is used which foresees that the plant is owned by the 
village committee and maintained by one or two com-
pensated caretakers [36]. Apart from this, additional 
jobs are created since the NPs are produced in plants 
in India [36],[37]. Besides, a waste management pro-
cess was introduced in order to prevent that arsenic is 
returned back into soils [37]. The risk emanating from 
remaining NPs in treated water is conceived of second-
ary importance when considering the number of early 
deaths caused by arsenic-contaminated water. 

Adsorption
Adsorptionf is an established technology that can be im-
proved using NPs. It can address persistent toxic metals 
such as arsenic that are less easily treated using conven-
tional technologies [38]. 
Adsorbents attract contaminants in the water, which 
become attached to their surface. Afterwards, they are 
removed and disposed of by, for instance, using nanofil-
tration methods [10],[39].
Iron-oxide NPs are relatively cheap and well-tested ad-
sorbents to clean groundwater from heavy metals [38]. 
In addition, nanocellulose is a promising future adsor-
bent for developing countries due to its biodegradabil-
ity and potential cost-effectiveness, but it still requires 
substantial R&D [24].

Disinfection
Disinfectiong using NPs can remove bacteria and viruses 
without using harmful chemicals, making them superior 
to existing disinfection techniques [5],[7].
NP disinfectants kill biological contaminants through 
slight toxicity, for instance by destroying the cell walls 
of bacteria [40].
Silver NPs are a suitable disinfectant because they are 
non-toxic even under limited exposure [41]. Also, their 
production process is simple, cheap, and the particles 
last long (up to 5 years) [5]. As a result, the technology 
is applied in developing countries, such as South Africa 
and India [42],[43]. 

In affluent countries, NT upgrades to existing infrastruc-
tures can be implemented in a cost-effective manner 
[4]. Once implemented, NTs increase the performance 
of many treatment systems. In general, NT solutions 
are considered as cost-effective since in many devices 
or systems insignificant amounts of NPs are used (see 
Table 2) [32]. Additionally, NTs are often more ener-
gy-efficient since they reduce the energy needed as for 
example in the case of membranes. Finding numbers 
on the cost-effectiveness of current NTs is difficult be-
cause conventional filters often address different con-
taminants, show diverse operational requirements and 
life spans. Nevertheless, an increase in production ca-
pacities generally contributes to the cost-effectiveness 
of nanoparticles (NPs) (see Table 2) [32]. Developing 
countries could strongly benefit from recent develop-
ments since NTs do not necessarily rely on existing wa-
ter infrastructures, require less energy input and can be 
delivered in smaller quantities [4],[30],[33]. NTs within 
water treatment offer countries, which lack water in-
frastructure, leapfrogging opportunities (e.g. foregoing 

the installation of large centralized treatment systems) 
and the opportunity to focus on more flexible applica-
tions [20],[24],[34]. Decentralized NT-based treatment 
systems or POUe devices will, particularly in developing 
countries, alleviate life-threatening water quality prob-
lems and contribute to improved health and well-being 
[4].

Table 1: Addressed pollutants (pathogens and heavy metals, 
pharmaceuticals) per nanotechnological water application

 POTENTIAL

In this section the most promising trends for four NTs in 
water treatment are highlighted: adsorption, disinfec-
tion, photocatalysis and membranes. For all four, trans-
lating promising results in the lab to the field remains 
the biggest challenge [10],[38].
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Photocatalysis
Photocatalysis is a relatively new NT for the treatment 
of water. Nano-catalysts are highly effective for treating 
dangerous pathogens such as E.coli, and can remove 
compounds such as pharmaceuticals, which are out of 
reach of conventional methods [10]. Although photoca-
talysis can theoretically remove toxic metals like mer-
cury, chromium and arsenic, it remains difficult to do 
this in the field [5],[44],[45]. Overall, photocatalysis is 
an effective, but highly specific method [20].
Photocatalysis uses nano-scale particles that, when ac-
tivated by UV light, break down pollutants such as virus-
es, bacteria and pesticides into non-toxic by-products. 
After use, the NPs remain unchanged and can therefore 
be collected and re-used [46].
The most common and cost-effective method for UV 
photo-catalysis involves the use of Titanium Dioxide 
(TiO2) NPs [10]. Three major advantages of TiO2 pho-
to-catalysis are the relatively modest technical installa-
tion, minimal operating experience required, and low 
implementation cost. This makes the technology espe-
cially useful in rural areas. Photocatalytic systems have 
been validated in Trinidad and Tobago and Swaziland, 
where a pilot installation successfully removed 99.9% 
of viruses and bacteria in only 60 seconds of treatment 
time [47],[48].

Membranes
Membranes act as a selective barrier within water, hin-
dering solids bigger than their pores to pass through 
them [30]. They are categorized according to their in-
creasing filtration capacities with decreasing pore sizes: 
microfiltration (MF), ultrafiltration (UF), nanofiltration 
(NF) and reverse osmosis (RO) membranes [30]. The 
smaller the pore sizes, the higher the pressure and 
subsequently the energy required to push the water 
through the membrane [49]. Therefore, research focus-
es on finding ways to improve cleaning ability without 
reducing permeabilityh or ease of fabrication [4],[7].

For potable water purification, multifunctional NF 
and UF membranes hold the greatest potential since 
their permeability is increased due to a better clean-
ing process resulting from the incorporation of NPs 
[4],[20],[50]. 
Multifunctional membranesi incorporate NPs such as 
adsorbents and catalysts [20],[22]. These nanofillers 
(e.g. nanosilver, carbon nanotubes, titanium dioxide, 
polymer coated NPs) increase the membrane’s resist-
ance to foulingk  and its selectivity [4],[22],[50],[51]. 
The properties of multifunctional membranes depend 
on the specific NPs incorporated. Nano-enhanced 
membranes require a stronger focus on long-term risk 
assessment since NPs might leach [50].
Due to the high energy requirements and the treat-
ment plant’s size necessary to operate NF and RO mem-
branes, less developed countries should rather opt for 
functionalized UF membranes or even low pressure 
driven MF membranes for decentralized and POU sys-
tems [20],[52].

Increasing emphasis is put on biologically inspired or 
bio-based membranes such as aquaporins or cellulose 
nanomaterials (CNs) [24],[53],[54]. Both enhance the 
membrane’s performance immensely, particularly its 
selectivity and permeability [52],[55]. CNs constitute a 
biodegradable, cheap and sustainable material whose 
strength contributes to the membrane’s stability [54]. 
The rapidly increasing number of CN-related patents 
highlights its potential [54].
Aquaporins are proteins which are able to remove 
most ions by forming water channels when embedded 
in membranes [7]. Current limitations to their large 
commercial application are their unavailability in large 
quantities, cost-intensiveness, and complex manufac-
turing process [51],[52]. 
Since the production of CNs and aquaporins is not ef-
ficient yet, R&D for a more sustainable manufacturing 
process is required [24],[52],[54]. CNs could be generat-
ed out of every kind of locally available biomass which 
also requires further research [22],[24].

 CHALLENGES

Risks
Uncertainty: Since human beings (by penetration of the 
skin or ingestion) and ecosystems are sensitive to the 
exposure of NPs in water, a concern about the toxicity 
of NPs is often expressed [8],[21]. Although much data 
has been gathered over the years, a significant gap of 
knowledge on the intrinsic hazardous properties of NPs 
and their behaviour in different environments still exists 
[7],[27],[63],[64]. This gap results from the indetermi-
nate behaviour of NPs and the lack of general standards 
to conduct risk assessment research [7],[8],[65]. Due to 
this, results from research are incomparable and con-
clusions on actual risks remain uncertain [7],[8],[65]. 
Consequently, main stakeholders in the water treat-
ment industry in developed countries, like water service 
companies, have been reluctant to use NT, which has 
impeded its large-scale application [10], [20],[27],[53].

Management & Perception: The dynamic and rapid set-
ting in which R&D takes place, together with the lack 
of general standards on risk assessment has caused 
regulation on NPs to lag behind [66],[67]. Furthermore, 
due to differences in political interests, the governance 
of NPs mainly takes place on national or regional level, 

Table 2: Price estimate comparison of water filters [56]-[62]
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whereas the transboundary nature of NPs requires in-
ternational cooperation [67]. While in the EU and the 
US risk assessment is an essential part of the commer-
cialization strategy, countries such as India and Brazil of-
ten neglect risk assessments as it is believed to hamper 
their competitive position on the market [25],[63],[68]. 
The dilemma in place is to find a balance between pro-
moting innovation, so that the socio-economic benefits 
of NT in water treatment can be realized, while simul-
taneously controlling the risks to such an extent that it 
prevents humans and ecosystems from being harmed 
[20]. 

Addressing Risks: Risks of NTs in water treatment can 
be mitigated by immobilization, collection and re-use of 
NPs through membranes or magnetic particles [5],[10]. 
Creating NMs based on biological materials such as cel-
lulose can also reduce risks, because NMs become more 
bioavailable and may be broken down before they can 
cause significant harm [48],[53],[63]. Furthermore, cur-
rent efforts are being made to develop new analytical 
methods to assess the effects and the behaviour of NPs 
more extensively, especially in the EU [27],[36].

Economic Inclusion
One of the opportunities of NT in water applications is 
that it can provide the base for a new industry in de-
veloping countries, once applications developed in the 
laboratory are translated into commercial products 
[15],[16]. However, at the moment it is challenging for 
researchers and entrepreneurs from developing coun-
tries to realize this commercialization path [16],[66]. 
First, the access to financial resources is limited, as 
funding for NT water applications is not a priority for 
governments [65],[69]. When small local start-ups do 
get the chance to emerge and enter the global market, 
they are often outcompeted by large multinationals 
[5],[25]. Second, researchers involved in NT in water 
applications often lack the skills to commercialize these 
applications. Intellectual property is already strong-
ly defined in Western countries, but a ‘patenting cul-
ture’ is not self-evident in most developing countries 
[16],[25],[70]. Consequently, developing countries can-
not gain a substantial share in the global market and 
young, talented researchers move to developed coun-
tries for greater economic opportunities [25],[70],[71]. 
This “brain-drain” further reinforces the weak position 
of developing countries in NT development and com-
mercialization, wherefore opportunities to reap the so-
cio-economic benefits from NT are missed [25],[71].

Public Inclusion
As for any new technology, public perception plays a cru-
cial role in the acceptance and adoption of the technol-
ogy by end-users [36],[72]. Therefore, the commerciali-
zation of NT water applications developed for end-users 
in developing countries is dependent on local opinions 
about the relevance of such an application [68],[73]. Yet, 

 POLICY RECOMMENDATIONS

–– Global investments in NT should focus on 
low-tech applications for decentralized treat-
ment plants and POU devices which are af-
fordable for local communities in developing 
countries.

–– Financial support for local start-ups in devel-
oping countries working with NTs in water 
treatment should be encouraged until they 
are able to compete with more established 
companies.  

–– Institutional investors should foster local en-
trepreneurship, by making funds available 
for capacity building on how to commercial-
ize new applications.
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–– R&D should focus more on bio-based NMs 
(e.g. aquaporins, cellulose) in order to enable 
sustainable applications.

–– Future R&D should include cost-benefit anal-
yses, and this information should be system-
atized to enable comparison between NTs.

R
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–– Global standards for the assessment of risks 
and the harmonization of existing risk assess-
ment tools should be realized as quickly as 
possible.

–– Future risk assessment should focus on the 
development of analytical methods that ad-
dress the long-term effects of NPs on human 
health and environment.R
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–– Social dialogue between researchers of NT 
water applications and targeted end-users 
should be facilitated on a global level in a way 
that enables two-way responsiveness. 

–– Liaisons between relevant stakeholders from 
developing and developed countries, espe-
cially research institutes and universities, 
should be established to stimulate transfer of 
knowledge.
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the inclusion of this target group during the R&D phase 
of the application is often lacking and the application is 
developed according to what researchers believe to be 
the solution rather than on what possible end-users in 
developing countries think is needed [36],[68],[71],[74]. 
Due to this approach, there is a risk that the implemen-
tation of the application will in the end be hampered 
and valuable resources are wasted [68],[73],[75]. The 
challenge in this respect is to overcome the financial, 
social and physical barriers between the location where 
the R&D takes place and there where the final product 
is supposed to be implemented. 

Chelsea Blaser, Pim ten Haaf,
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