

The importance of energy balances to estimate greenhouse gas emissions

Roberta Quadrelli Head - Energy Balances, Prices, Emissions, Efficiency IEA Energy Data Centre

Capacity Development for Mainstreaming Energy Sustainable Development Goals (SDGs), Targets and Indicators into Statistical Programmes in Selected Latin American Countries Panama, February 2015

GHG emissions: why do we focus on energy balances?

What sectors drive GHG emissions?

Generally, energy-related CO₂ dominate GHG emissions

Note: Energy role varies across countries

Source: IEA / EDGAR estimates, 2014

Always need to consider country circumstances

iea

In all cases: an accurate accounting of all energy flows is essential

Transformation

Supply

Final consumption

201 [.] Indicators	Baland	ces Co	oal and Pea	t Elec	stricity an	d Heat	Natural Ga	s Oil	Renewable	s and)	Waste
	Coal and peat	Crude oil	Oil products	Natural gas	Nuclear	Hydro	Geothermal, solar, etc.	Biofuels and waste	Electricity	Heat	Total [*]
Production	33658	173317	0	132349	24390	32309	901	12106	0	0	409029
Imports	5954	34510	12790	25960	0	0	0	759	1287	0	81260
Exports	-20076	-118761	-19053	-76831	0	0	0	-570	-4430	0	-239722
International marine bunkers ^{**}	0	0	-524	0	0	0	0	0	0	0	-524
International aviation bunkers ^{**}	0	0	-1214	0	0	0	0	0	0	0	-1214
Stock changes	66	1064	-206	2092	0	0	0	0	0	0	3016
TPES	19603	90130	-8207	83569	24390	32309	901	12295	-3144	0	251845
Transfers	0	-3781	7993	0	0	0	0	0	0	0	4213
Statistical differences	2329	4585	4579	2410	0	0	0	-1	0	-32	13872
Electricity plants	-17629	0	-1820	-10824	-24390	-32309	-901	-2426	53814	0	-36484
CHP plants	0	0	-41	-2468	0	0	0	-39	958	544	-1047
Heat plants	0	0	0	0	0	0	0	-62	0	34	-28
Gasworks	0	0	0	0	0	0	0	0	0	0	0
Oil refineries	0	-91737	95461	-849	0	0	0	0	0	0	2875
Coal transformation	-1182	0	0	0	0	0	0	0	0	0	-1182
Liquefication plants	0	802	0	-1940	0	0	0	0	0	0	-1138
Other transformation	0	0	0	0	0	0	0	0	0	0	0
Energy industry own use	-4	0	-7956	-13986	0	0	0	-1	-4019	0	-25966
Losses	0	0	0	0	0	0	0	0	-2984	0	-2984
Total final consumption	3117	0	90009	55912	0	0	0	9766	44625	546	203975
Industry	2450	0	6067	23876	0	0	0	5840	17698	545	56476
Transport	0	0	54404	2436	0	0	0	1637	331	0	58808
Other	33	0	8935	26208	0	0	0	2289	26596	0	64062
Residential	33	0	2647	14661	0	0	0	2279	13161	0	32782
Commercial and public services	0	0	3008	10823	0	0	0	10	12623	0	26464

The importance of the energy balance to estimate CO₂ emissions

How to estimate CO₂ emissions?

Combustion Reaction

Focus on fuel combustion: the largest source of energy emissions

			-	
Brazil: Balances for 2012	Coal*	Crude oil*	Oil products	Natural gas
Production	2479	112660	0	16248
Imports	12248	17815	24284	10980
Exports	0	-27546	-6292	0
International marine bunkers***	0	0	-3767	0
International aviation bunkers***	0	0	-2231	0
Stock changes	520	542	1365	0
TPES	15247	103471	13359	27228
Transfers	0	-2251	2167	0
Statistical differences	0	-372	-714	68

Combustion of fossil fuels (coal, oil, natural gas) generates CO₂ Note: Biofuels are considered as "not emitting" within energy sector (IPCC Guidelines)

For all products: estimating CO₂ emissions based on carbon conservation

	MODULE	ENERGY	ENERGY										
	CATEGORY	FUEL COMBUSTION	'UEL COMBUSTION ACTIVITIES										
	CATEGORY CODE	1A (FOR EACH SOU	A (FOR EACH SOURCE CATEGORY)										
	Sheet	CO ₂ , CH ₄ AND N ₂ C	CO_2 , CH_4 and N_2O from fuel combustion by source category – Tier 1										
		Ener	gy consump	tion	CO	2							
		A Consumption (Mass, Volume or Energy unit)	B Conversion Factor (TJ/unit)	C Consumption (TJ)	CO ₂ Emission Factor (Kg CO ₂ /TJ)	CO ₂ emissions (Gg CO ₂)							
				C=(AxB)		E=(CxD)							
Energy consumption		X Calor x value	ific x s	CO ₂ emis factors	sion =	CO ₂ Emis	sions						
	Gas/Diesel Oil												
				Source: 2	2006 IPCC G	uideline	s						

Accuracy of energy data by product and by sector – including calorific values reflected in emissions data quality

Strengthening the energy balance to produce accurate emissions indicators

1: Energy supply

Guatemala: Balances for 2012

in the up and tenness of all any instant	(lateral -	a a a t									
in thousand tonnes of oil equivalent	(Ktoe) C	on a net ordet oil*	Oil products	Natural gas	Nuclear	Hydro	Geothermal, solar, etc.	Biofuels and waste	Electricity	Heat	Total**
Production	0	587	0	0	0	383	211	7057	0	0	8238
Imports	356	0	3546	0	0	0	0	0	32	0	3934
Exports	0	-495	-131	0	0	0	0	0	-30	0	-655
International marine bunkers***	0	0	-311	0	0	0	0	0	0	0	-311
International aviation bunkers***	0	0	-44	0	0	0	0	0	0	0	-44
Stock changes	-49	-19	-22	0	0	0	0	0	0	0	-90
TPES	307	73	3039	0	0	383	211	7057	2	0	11072
		12 - 10 - 8 - 000 6 - 4 - 2 -	Gua	atemala - (CO2 em	issions	5				

Basis for "reference approach" emissions ("top-down") and quick indicator of overall trends

> Sources: IEA World Energy Balances, 2014 IEA CO₂ emissions from fuel combustion, 2014

Note the relevance of international bunkers data

IPCC Guidelines: international aviation and marine bunkers are not included in national emissions totals

Energy and emissions: understanding the relative weights of sources

Costa Rica: Balances for 2012-

Sources: IEA World Energy Balances, 2014 IEA CO₂ emissions from fuel combustion, 2014

A "supply" indicator: CO₂/TPES "carbon intensity" of the energy mix

iea

Brazil	Coal	Oil	Gas	Nuclear	Hydro	Biofuels	Other	Total
TPES (PJ)	638	4892	1140	175	1495	3269	186	11795
CO _{2 (} Mt)	60	325	63	0	0	0	0	448
CO ₂ /TPES (tCO2/TJ)	94	66	55	0	0	0	0	38

Need accurate supply data for all fuels – including solid biofuels!

Cuba: Balances for 2012

2: Transformation sector

Need accurate input/output data by product type (e.g. electricity generation)

A "transformation" indicator: CO₂/kWh the "carbon intensity of electricity"

iea

Total CO₂/kWh: weighted average across all power plants

For an individual power plant: Increases with carbon intensity of (fossil) fuel used

Decreases with efficiency of electricity generation

Need accurate data on amounts of combusted fuels and of electricity generated, by source

3: Final consumption

	Coal and peat	Crude oil	Oil products	Natural gas	Nuclear	Hydro	Geothermal, solar, etc.	Biofuels and waste	Electricity	Heat	Total*
Total final consumption	311	7	90009	5591	2	0	0 0	9766	44625	546	203975
Industry	245)	0 6067	2387	6	0	0 0	5840	17698	545	56476
Transport	()	0 54404	243	6	0	0 0	1637	331	0	58808
Other	3:	3	0 8935	2620	8	0	0 0	2289	26596	0	64062
Residential	3:	3	0 2647	7 1466	1	0	0 C	2279	13161	0	32782
Commercial and public services)	0 3008	3 1082	3	0	0 0	10) 12623	0	26464
Agriculture / forestry			0 3280) 72	4	0	0 C	C	812	0	4816
Fishing	1)	0 ()	0	0	0 C	C) 0	0	0
Non-specified			0 ()	0	0	0 C	C) 0	0	0
Non-energy use	634	4	0 20603	339	2	0	0 0	C) 0	0	24629

Basis for "Sectoral approach" emissions estimates ("bottom-up")

Reconciling supply and demand sides

Assessing differences to enhance data quality

"Demand" indicators: shares by sector

Cuba - CO₂ shares, 2012

Ecuador - CO₂ shares, 2012

Understanding country-specific drivers of emissions

Analysing indicators together to understand drivers of emission trends

What drives global CO₂ trends?

Applying the "Kaya identity": $CO_2 = population \times GDP/population \times TPES/GDP \times CO_2/TPES$

iea

Understanding different dynamics at country level

 CO_2 = population x GDP/population x TPES/GDP x CO_2 /TPES

The importance of energy balances: bringing all pieces of information together

Emissions indicators: another good reason to develop a complete and accurate national energy balance