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Growing energy demands, uncertainty about supplies, and 
the urgent need to reduce emissions of greenhouse gases 
mean that the world faces an uncertain energy future. Many 
countries have begun to explore alternative energy sources, 
including so-called unconventional fossil fuels such as 
natural gas hydrates.

Gas hydrates generally occur in relatively inaccessible polar 
and marine environments, which is why they have not been 
extensively studied until recently. Research about naturally 
occurring gas hydrates has increased markedly over the 
past two decades, however, and understanding about where 
hydrates occur and how they might be exploited is growing 
rapidly. Japan has recently tested offshore production of 
natural gas from a hydrate reservoir located more than 1,300 
metres below the sea’s surface and other countries are also 
actively exploring production potentials.

Continuing a tradition of identifying emerging issues, the 
Global Outlook on Methane Gas Hydrates is the result of 

a rigorous assessment process designed to ensure the 
availability of scientifically credible and policy-relevant 
information. This assessment format brings together 
diverse strands of knowledge and is a key mechanism 
through which science informs decision-making.
 
This report provides a basis for understanding how gas 
hydrates occur and the emerging science and knowledge 
as to their potential environmental, economic, and social 
consequences of their use. The intention of this publication 
is to enable sound policy discourse and choices that take into 
account a number of important perspectives. 

Achim Steiner
UN Under-Secretary General 
and Executive Director of UNEP

FOREWORD
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Methane gas hydrates are solid, ice-like combinations of 
methane and water (Fig. I.1) that are stable under conditions 
of relatively high pressure and low temperature. Gas hydrates 
contain most of the world’s methane and account for roughly 
a third of the world’s mobile organic carbon. Because gas hy-
drates tend to occur in relatively inaccessible and harsh polar 
and marine environments, they were not studied extensively 
until recently. For more than a century after their first crea-
tion in the lab by scientists in the early 1800s, gas hydrates 
were considered an academic curiosity, with no meaningful 
occurrence in nature. In the 1930s, they were recognized as 
an industrial hazard forming blockages in oil and gas pipe-
lines. In the late 1960s, scientists in Russia inferred their 
occurrence in nature. However, it wasn’t until after a series 
of deep-ocean scientific drilling expeditions in the late 1970s 
and early 1980s that the abundance of gas hydrates in the 
natural environment was widely recognized.

Growing energy demands and climate concerns have brought 
increased attention to the potentially immense quantity of 
methane held in natural gas hydrates. The result has been 
a significant acceleration of the investigation of gas hydrates 
over the past two decades (Fig. I.2), and the pace of scientific 
discovery about naturally occurring gas hydrates continues 
to increase. 

Although industry remains focused primarily on mitigating 
unwanted gas-hydrate formation in production and transport 
infrastructure, it is beginning to invest in understanding the 
hazards that naturally occurring gas hydrates pose to deep-
water and Arctic energy development. Academia, supported 
by national programs, is making significant progress in un-
derstanding the basic physics and chemistry of gas hydrates, 
as well as their impact on the physical properties of sedi-
ments. This research furthers our understanding of the role 
of gas hydrates in global environmental processes, including 
natural geohazards, long-term carbon cycling and – given 
that methane is a potent greenhouse gas – global climate 
change. However, the primary driver for much of the current 
interest is the prospect of utilizing gas hydrates as an energy 
resource. For a world in which energy demands are increas-
ing steadily and future energy supplies are uncertain, the 
widespread occurrence of potentially immense gas resources 
is motivating intensive investigations in many countries.

Gas hydrate research is shifting from the level of individual 
scientists to coordinated national research programs. As a 
result, policy makers, business leaders, and private citizens 
are now engaged in a discussion about the most appropriate 
directions for gas hydrate research, as well as about manage-
ment and funding issues. The large quantities of naturally 
occurring gas hydrates distributed around the globe give rise 
to numerous societal and scientific concerns. 

To facilitate decisions that must often rely on highly technical 
and multidisciplinary information, this comprehensive sum-
mary of current issues in global gas hydrate research and de-

PREFACE

Figure i.1: Gas hydrate nodules. Nodules (white) recovered while 
coring in the East Sea (Sea of Japan) (Courtesy Korea Institute of 
Geoscience and Mineral Resources)
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Figure i.2: Timeline of major milestones in gas hydrate (GH) research.
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velopment has been compiled: Frozen Heat: A global outlook 
on methane-gas hydrates. Frozen Heat is a two-part review 
that covers the role of gas hydrates in natural systems (Vol-
ume 1) and the potential impact of gas hydrates as a possible 
new and global energy resource (Volume 2).

Volume 1 Summary
As a basis for understanding how gas hydrates occur and 
evolve in nature, Chapter 1 describes the crystal structures of 
gas hydrates, their stability requirements, and the environ-
mental settings in which gas hydrates commonly occur. It 
also gives estimates of the global quantity and distribution of 
gas hydrates. These gas hydrate basics provide a context for 
the central message in Chapter 2: gas hydrates are a key part 
of the global carbon cycle, storing and releasing vast quan-
tities of methane in response to changing environmental 
conditions. Chapter 2 summarizes how methane is gener-
ated, moved into and out of gas hydrates, and gets consumed. 
Chapter 2 also discusses the link between gas hydrates and 
deep marine ecosystems. For example, much of the methane 
released by gas hydrates into these ecosystems is consumed 
by microbes in the upper sediment layers and water column 
and never reaches the atmosphere.

Understanding the behaviour of gas hydrates over long time 
periods is an important step in understanding how Earth 
works. As discussed in Chapter 3, the breakdown of gas hy-
drates due to natural events, such as long-term increases in 
bottom-water temperature, could release large volumes of gas 
from marine sediments, potentially transferring significant 
amounts of methane into the oceans and, to a lesser degree, 
into the atmosphere. Chapter 3 considers models of past cli-
mate change and future climate conditions and how those 
models might be affected by potential feedbacks from gas hy-
drates. It is currently thought that methane from gas hydrates 
likely contributed to, but did not trigger, past global warm-

ing events. Chapter 3 notes that, in the near term, the direct 
contribution of methane from gas hydrates to Earth’s climate 
warming will likely be of minor significance. Despite the 
tremendous quantity of methane contained in gas hydrates 
globally, only a small fraction occurs in environments that will 
warm sufficiently over the next century to release methane 
capable of reaching the atmosphere. A more significant near-
term result of methane release, particularly in the ocean, may 
be the oxygen depletion and acidification of the deep ocean 
that occurs when methane is broken down by microbes. Base-
line monitoring studies will be important for understanding 
the extent of these environmental degradation issues.

Volume 2 Summary
The central message in Volume 2 is that gas hydrates may 
represent both an enormous potential energy resource and 

Figure i.3: Left: methane from hydrate flared from the Mallik 5L-
38 Arctic gas hydrate research well in Canada (Courtesy of the 
Mallik 2002 Gas Hydrate Production Testing Program). Right: 
well-logging gas-hydrate-bearing sediment in the Gulf of Mexico 
(Courtesy R. Boswell, DOE)
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source of greenhouse gas for a world with ever-increasing 
energy demands and rising carbon emissions. Even if no 
more than a small subset of the global resource is accessible 
through existing technologies, that portion still represents 
a very large quantity of gas. The accessible subset could in-
clude highly concentrated gas hydrate accumulations in loca-
tions where conventional hydrocarbon production is already 
planned or underway, and more diffuse deposits in areas 
with strong societal motivations for developing domestic en-
ergy resources. To date, a few short-term, pilot-scale methane 
production tests have been conducted in research wells. The 
results suggest that larger-scale exploitation may be feasible, 
but no commercial gas hydrate production has yet occurred. 
Several nations, however, are currently researching the en-
ergy potential of gas hydrates (Fig. I.3). Recent detailed as-
sessments of the energy potential of methane-gas hydrates 

concluded that there are no anticipated technical roadblocks 
to producing gas from hydrate deposits (Expert Panel on Gas 
Hydrates 2008; Committee on Assessment of the Depart-
ment of Energy’s Methane Hydrate Research and Develop-
ment Program 2010). 

Ultimately, a combination of technological advances and fa-
vourable global/regional market conditions could make gas 
hydrate production economically viable. Therefore, Volume 
2 provides a summary of gas-hydrate-based, energy-related 
information useful in evaluating future energy resource op-
tions. Topics addressed in Volume 2 include a review of likely 
future trends in energy supply, a characterization of prospec-
tive gas hydrate resources, technologies for exploration and 
development, and the potential environmental, economic, 
and social implications of gas hydrate production.
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What are
Gas Hydrates?

CHAPTER 1
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The English chemistry pioneer Sir Humphry Davy first com-
bined gas and water to produce a solid substance in his lab 
in 1810. For more than a century after that landmark mo-
ment, a small number of scientists catalogued various solid 
“hydrates” formed by combining water with an assortment 
of gases and liquids. Sloan and Koh (2007) review this early 
research, which was aimed at discerning the chemical struc-
tures of gas hydrates (Fig. 1.1), as well as the pressures and 
temperatures at which they are stable. Because no practical 
applications were found for these synthetic gas hydrates, they 
remained an academic curiosity. 

That perspective changed in 1934. Natural gas was begin-
ning to be used widely as a fuel and was often transported via 
pipelines. Some pipelines were becoming plugged by what 
appeared to be ice. E.G. Hammerschmidt (1934) discovered 

the plugs were not ice, but gas hydrates. This initiated a wave 
of engineering research – now known widely as flow assur-
ance – dedicated to predicting and preventing the formation 
of hydrate blockages in industrial equipment. Since then, 
as hydrocarbon exploration moved into deeper water where 
hydrates form more readily, the oil and gas industry has in-
vested heavily in flow assurance research.

Much of the early gas hydrate research was empirical in nature, 
as knowledge of the chemical structures of gas hydrates was still 
limited. Determining the precise chemical formulation for gas 
hydrates was challenging. A breakthrough came in the early 
1950s, when a relatively new technology, X-ray diffraction, re-
vealed that gas hydrates were in fact clathrates, a term coined a 
few years earlier to describe solids with no fixed chemical com-
position in which small guest molecules are trapped within a 
host lattice. For many years, the combination of the predictive 
power of a thermodynamic model for clathrate behaviour (van 
der Waals and Platteeuw 1959) and crystal structure informa-
tion from X-ray diffraction provided the cornerstone of efforts 
to predict gas hydrate properties based on their crystal structure 
(Von Stackelberg and Muller 1951; Davidson 1973). 

In the mid-1960s, following research into the pressures and 
temperatures at which gas hydrates are stable (Pieroen 1955; 
van der Waals and Platteeuw 1959), Y. Makogon and colleagues 
in Russia recognized the natural association of methane and 
water, and that the physical conditions (low temperatures and 
high pressures) necessary to form gas hydrates should occur 
naturally on Earth (Makogon 1965). In high-latitude perma-
frost regions, they predicted, gas hydrates should be found 
starting hundreds of metres below the ground surface. In 
marine environments, they should be found in shallow sea-
floor sediments beneath cold polar bottom waters where water 
depths exceed approximately 300 metres, or in the sediments 
beneath warmer, lower-latitude bottom waters where water 
depths exceed 450-500 metres. Industry drilling in Arctic 
permafrost confirmed the existence of naturally-occurring 
gas hydrates in the early 1970s. It was not until a series of 

1.1 INTRODUCTION

12 Å 12 Å

A B

12 Å 12 Å

A B
Figure 1.1: Crystal structures of ice and methane gas hydrate. For 
(A) ordinary hexagonal ice (ice Ih) and (B) structure I methane gas 
hydrate (sI methane hydrate). Each sphere represents an atom: 
white for hydrogen, red for oxygen, green for carbon. In hexagonal 
ice, water molecules (H2O) are arranged in a hexagonal lattice. In 
sI methane hydrate, water molecules form a lattice of cages, each 
cage potentially holding a methane molecule (CH4). On the right 
side of (B) and again toward the middle of (B), the cages line up, 
appearing to hold a line of methane molecules (Figures courtesy B. 
Anderson, WVU/NETL). 

A B
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The Deep Sea Drilling Project (DSDP) (1968-1983, Legs 1-96) 
introduced R/V Glomar Challenger, the first international 
drilling platform for global studies of gas hydrates in the 
marine environment (Figure TB1.1). Over the course of several 
DSDP legs, scientists obtained the first tangible proof that gas 
hydrates exist in a variety of geologic settings, evidence that 
gas hydrates could be nearly ubiquitous in continental-margin 
and slope sediment around the world.

An objective of DSDP Leg 11 in 1970 was to investigate the 
nature of the anomalous acoustic reflections (called Bottom 
Simulating Reflectors or BSRs) that parallel the sea floor. 
They had been observed on seismic profiles of the passive 
margin along the Blake Outer Ridge in the Atlantic Ocean. 
The expedition recovered sediment cores with methane 
concentrations so high that, in many cases, gas expansion 
was sufficient to extrude sediment from core liners. Although 
no obvious gas hydrates were recovered on Leg 11, the high 
gas concentrations and presence of the BSR were suggestive 
enough for the R/V Glomar Challenger to return in 1980 
(DSDP Leg 76) with an objective of recovering gas hydrates. 
This objective was met with the recovery and testing of a gas 
hydrate specimen with a high concentration of methane.

A year earlier, in 1979, gas hydrates were recovered in the 
active margin setting along the landward wall of the Middle 
America Trench during DSDP Leg 66 off Mexico and Leg 67 off 
Guatemala. The primary gas from hydrate specimens at both 
sites was methane, which was confirmed by a massive gas-
hydrate specimen recovered in 1983 during Leg 84 near the Leg 
66 sites. Although a BSR was present at the Leg 66 hydrate-

Box 1.1 Gas Hydrate and the Deep Sea Drilling Project

recovery sites, the Leg 67 hydrate recoveries were in vitric, or 
glass-like, sands with no associated BSR.

Yet another hydrate-bearing geologic setting was discovered 
in 1983, when DSDP Leg 96 recovered gas-hydrate nodules 
and crystals in Gulf of Mexico mud. Taken together, these 
sites provided a particularly significant result of the Deep Sea 
Drilling Project by showing how gas hydrates were present 
in sediments from a wide range of geologic environments. 
Extrapolation of these results suggests that gas hydrates 
are ubiquitous in continental-margin and slope sediment 
around the world, and this assumption has been confirmed by 
subsequent investigations.

marine discoveries made in the early 1980s during scientific 
expeditions by the Deep Sea Drilling Program’s R/V Glomar 
Challenger (see Text Box 1.1), however, that gas hydrates were 
recognized as a significant part of the natural environment. It 

was soon realized that such a large, and previously unappre-
ciated, storehouse of organic carbon and its inherent energy 
potential could have profound implications for society and our 
understanding of Earth (Kvenvolden 1988a, b; 2000).

Figure TB-1.1: The R/V Glomar Challenger (Courtesy of the U.S. 
Geological Survey).
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In nature, most substances have a fixed composition of build-
ing blocks. For example, in the case of methane (CH4), there 
is always one carbon (C) atom for every four hydrogen (H) 
atoms, and these atoms are locked together in a fixed geo-
metric structure by chemical bonds. It was initially assumed 
each gas-hydrate structure had a fixed ratio of gas molecules 
to water molecules, but this was later discovered to be incor-
rect (de Forcrand 1902). 

Gas hydrates are classified as clathrates. In a clathrate, the 
solid lattice of host molecules is physically stabilized by en-
closing a sufficient, but not fixed, number of appropriately-
sized guest molecules. The guest molecules reside within 
cages, which are open cavities within the lattice, and the sta-
bility of the structure depends on the co-existence of both 
hosts and guests (Fig. 1.1). This combination occurs without 
any direct chemical bonding. Furthermore, it is stable even 

1.2 WHAT ARE GAS HYDRATES?

Figure 1.2: Gas hydrate outcrop on the sea floor of the northern Gulf of Mexico. The hydrate has an orange hue due to the presence of small 
volumes of oil. This hydrate outcrop hosts pink “methane ice worms.” These worms, discovered in 1997, are generally 2–4 cm in length, 
and graze upon bacteria living on the hydrate (Fisher et al., 2000). Additional ice worm descriptions are in Volume 1, Chapter 2 (Photo 
courtesy I. MacDonald, FSU).
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if some cages are empty. For methane hydrate to be stable, 
only 70 per cent of the available cages need to contain meth-
ane (Holder and Hand 1982), although typically more than 
95 per cent of the cages are filled (Circone et al. 2005). The 
occupancy rate can vary, depending on the pressure, tem-
perature, and the gases present. As a result, clathrates are 
non-stoichiometric compounds, or compounds without any 
fixed chemical composition. Composition measurements 
over a wide range of pressure and temperature conditions, 
however, show methane hydrate has an average composition 
of CH4•5.99(+/–0.07)H2O (Circone et al. 2005).

Water is the exclusive lattice-building molecule in natural clath-
rates (hence the popular term, hydrate). Suitable guest mol-
ecules include methane (CH4), carbon dioxide (CO2), nitrogen 
(N2), ethane (C2H6), propane (C3H8), and other low-molecular-
weight gases and liquids. Methane has, so far, been the most 
common clathrate guest molecule observed in nature. There-
fore, the term methane hydrate is also common and will be used 
occasionally in this report and associated web pages. 

Naturally occurring clathrates can fit a variety of gases in their 
structures and create different water lattice shapes or cages 
to accommodate the different sizes of available gas molecules 
(Sloan and Koh 2007). The most common clathrate struc-
ture forms in the presence of methane and a few other small 
guest atoms or molecules with diameters between 4.2 and 6 
Angstroms (Å). An Angstrom is 1/10 000th of a micron or 
10-10 metres. This particular clathrate structure is known as 
Structure I (Fig. 1.1). A unit cell, the smallest repeatable ele-
ment of the Structure I hydrate lattice, consists of 46 water 
molecules enclosing 2 smaller cavities and 6 larger cavities. 
When larger gas molecules (6 to 7 Å), such as ethane and 
propane, are present in sufficient quantities, a second clath-
rate structure (Structure II) forms. The unit cell of Structure 
II hydrate consists of 136 water molecules creating 16 small 
cavities and 8 large cavities. A third structure, known as 
Structure H, has also been found in nature and can accom-
modate larger molecules (7 to 9 Å) when small molecules are 

also present. To date, field studies suggest Structure I hydrate 
occurs most often, Structure II is much less common, and 
Structure H is extremely rare. 

Although people do not ordinarily see methane hydrate in 
their daily lives, the methane and water molecules that make 
up methane hydrate are quite ordinary. In fact, approximately 
85 per cent of the molecules in gas hydrates are water mole-
cules, and the chemical similarities between methane hydrate 
and common water ice lead to many similarities in physical 
properties. For example, the density of both substances (~0.9 
grams per cubic centimetre) is less than that of liquid water 
(~1 gram per cubic centimetre), so both ice and gas hydrates 
will float in water. Visually, large nodules of methane hydrate 
tend to look like white, opaque ice, although in nature, small 
impurities can result in hydrate that ranges in colour from 
orange (Fig. 1.2) to blue. 

Ice and methane hydrate are, however, very different in terms 
of the conditions at which they are stable. In general, fresh-
water-ice stability on Earth is only a function of temperature, 
with the water-ice to liquid-water transition occurring at 0ºC 
(32ºF). As discussed in section 1.3 however, gas hydrate for-
mation requires a suitable combination of temperature, pres-
sure, water chemistry, guest-molecule composition and guest 
molecule abundance (Thakore and Holder 1987). 

Where gas hydrates do exist, they store gas very effectively. 
Methane hydrate stores so much gas that when exposed to 
an open flame in controlled conditions, the dissociation, or 
hydrate breakdown, can free enough flammable methane to 
create what looks like burning ice, surrounded by a growing 
pool of water (see front cover of this volume). Dissociating 
one unit volume of methane hydrate will release approxi-
mately 0.8 unit volumes of pure water and, once the gas is 
brought to atmospheric pressure, 164 to 172 unit volumes of 
methane, depending on cage occupancy (Kvenvolden 1993; 
Xu and Germanovich 2006). This is true regardless of how 
deeply the methane hydrate was initially buried.
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Given adequate supplies of gas and water, the fundamental 
controls on gas-hydrate formation and stability are pressure 
and temperature. In general, a combination of low tempera-

ture and high pressure is needed to form methane hydrate 
(Fig. 1.3). Because of Earth’s geothermal gradient – the natural 
increase of temperature with depth below the ground surface 

1.3 GAS HYDRATE FORMATION,
STABILITY, AND OCCURRENCE 

Figure 1.3: Stability conditions for gas hydrates. Idealized phase diagrams illustrating where methane hydrate is stable in marine and 
permafrost settings. Hydrate can exist at depths where the temperature (blue curve) is less than the maximum stability temperature 
for gas hydrate (orange curve). Pressure and temperature both increase with depth in the Earth. Although hydrates can exist at warmer 
temperatures when the pressure is high (orange curve), the temperature at depth (blue curve) gets too hot for hydrate to be stable, limiting 
hydrate stability to the upper ~1km or less of sediment. The presence of salt, a gas hydrate inhibitor, shifts the gas hydrate stability curve 
(orange) to lower temperatures, decreasing the depth range of the gas hydrate stability zone. For seawater, this decrease is approximately 
1.1°C (Dickens and Quinby-Hunt, 1994) (Figure modified from Kvenvolden (1988a)).
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– gas hydrates are stable only in locations where high pres-
sures can be attained in shallower, cooler sediments. The verti-
cal extent over which these conditions occur at any location is 
known as the gas hydrate stability zone (GHSZ). In this report, 
unless otherwise stated, the GHSZ is for Structure I methane 
hydrate, the most common gas hydrate on Earth.

The GHSZ exists in Arctic regions where cold average air 
temperatures create thick zones of permanently frozen soils 
(permafrost). In these regions, the top of the GHSZ typically 
occurs about 200 to 300 metres below the land surface, often 
within an interval of permafrost. The GHSZ can extend 500 
metres or more below the base of the permafrost (Fig. 1.3).

The GHSZ also exists in oceans or deep inland lakes where 
high pressures are generated by relatively deep water – typi-
cally 300 to 500 metres or more, depending on the bottom-

water temperature. The top of the GHSZ occurs within the 
water column, with the base of the GHSZ some distance be-
low the sea floor (Fig. 1.3). The thickness of the GHSZ gener-
ally increases with increasing water depth. In areas of deep 
water and low geothermal gradients, the GHSZ can extend 1 
000 metres or so below the sea floor (Milkov 2004), with the 
most deeply buried deposits being as warm as 20°C or more 
(see Collett et al. 2009). Even this maximum depth for gas 
hydrates is shallow compared to many conventional hydro-
carbons, which are now being sought nearly 10 000 metres 
below the sediment surface (Lewis et al. 2007; Mason 2009).

Just because a given location satisfies the pressure and tem-
perature requirements for gas-hydrate stability, there is no 
guarantee gas hydrates are present. If pressure and tem-
perature were the only determinants, gas hydrates would 
be virtually ubiquitous throughout oceanic sediment. In ad-

Figure 1.4: Selected gas hydrate study areas. The yellow squares indicate a few of the historically-significant gas hydrate research sites, along 
with locations where gas hydrates have been recovered from depths greater than 50 meters beneath the sediment surface. Remote sensing 
studies have inferred the presence of gas hydrate in numerous other locations. Though widespread, methane gas hydrates are restricted to 
locations where adequate supplies of methane are available, which is generally on or near continents (Figure modified from Ruppel et al. 2011).
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dition to appropriate pressure and temperature conditions, 
gas hydrate formation requires adequate supplies of water 
and hydrate-forming guest molecules (Fig. 1.4). The inter-
val in which gas hydrates actually occur within the GHSZ is 
designated as the gas hydrate occurrence zone or GHOZ. As 
discussed in Volume 1 Chapter 2, the methane incorporated 
into gas hydrates comes from organic carbon. In shallow 

sediments, the organic carbon is broken down by microbes, 
with methane being one of the by-products. At significant 
depths, it is broken down by thermal processes in which 
heat cracks the organic matter into smaller molecules, such 
as methane (Fig. 1.5). Organic carbon itself is not uniformly 
distributed, nor has it always been distributed in the same 
locations. In modern times, for example, approximately 90 

Figure 1.5: Fate of buried organic matter. Buried organic material is degraded by microbes, thermogenically altered by heat and pressure, or buried 
more deeply and lost to the surface carbon cycle. Methane produced during microbial (also called “biogenic”) and thermogenic decomposition 
can slowly migrate through overlying sediment with fluids or rise rapidly along faults or other permeable paths. As methane-saturated fluids 
rise and cool, excess methane forms gas bubbles below the base of gas hydrate stability, BGHS. Above the BGHS, excess methane generally 
forms methane hydrate, but can also form bubbles (Suess et al., 1999, Liu and Flemings 2006) (Figure modified from Pohlman et al. 2009).
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per cent of the organic carbon buried in ocean sediment is 
found beneath relatively shallow water near the continents 
(Hedges and Keil 1995; Buffett and Archer 2004). In peri-
ods of much lower sea levels, however, organic carbon was 
deposited farther from the continents’ current edges, on 
what is now the continental slope (Muller and Suess 1979; 
Jasper and Gagosian 1990). 

Gas hydrate volume estimates rely on two basic parame-
ters: the amount of pore space, or porosity, available for gas 
hydrates in the stability zone (Kvenvolden, 1988a; Collett, 
1995; Dickens 2001; Klauda and Sandler 2005), and the per-
centage of that space occupied by gas hydrates, called the gas 
hydrate saturation. The gas hydrate saturation is related to 
the amount of methane that can be formed from available 
organic matter and transported into the GHSZ (Harvey and 
Huang 1995; Archer et al. 2009). Gas hydrates tend to be 
distributed quite unevenly because the porosity, the perme-
able paths for liquid and gas flow, and the conditions con-
trolling the conversion of organic material into methane gas 
can all vary dramatically over short distances (Expert Panel 
on Gas Hydrates 2008; Frye 2008; Solomon et al. 2008).

The Earth’s heterogeneous gas-hydrate distribution and 
uncertainties in porosity and gas hydrate saturation have 
led to widely varying global estimates of the methane con-
tained in hydrates (Fig. 1.6). Even the lowest estimates, 
however, are so large they are given in terms of gigatonnes 
of carbon (GtC). A gigatonne equals 109 tonnes, equivalent 
to 1 petagram or 1015 g. A petagram of water, for example, 
takes up 1 cubic kilometre. For a sense of scale, it is esti-
mated that approximately 1.8 Gt of methane carbon was 
consumed globally as natural gas in 2011 (U.S. Energy In-
formation Administration 2010).

The earliest global estimates of methane content in gas hy-
drates were made prior to the first recovery of gas hydrates 
from marine sediment (green region in Fig. 1.6). These esti-
mates assumed gas hydrates existed wherever pressure and 
temperature conditions for gas hydrate stability were satis-
fied. This was equivalent to assuming gas hydrates were pre-
sent in sediments beneath about 93 per cent of the world’s 
oceans (Milkov 2004).

Figure 1.6: Estimates of the methane held in hydrates worldwide. Early 
estimates for marine hydrates (encompassed by the green region), 
made before hydrate had been recovered in the marine environment, 
are high because they assume gas hydrates exist in essentially all 
the world’s oceanic sediments. Subsequent estimates are lower, but 
remain widely scattered (encompassed by the blue region) because of 
continued uncertainty in the non-uniform, heterogeneous distribution 
of organic carbon from which the methane in hydrate is generated, 
as well as uncertainties in the efficiency with which that methane is 
produced and then captured in gas hydrate. Nonetheless, marine 
hydrates are expected to contain one to two orders of magnitude more 
methane than exists in natural gas reserves worldwide (brown square) 
(U.S. Energy Information Administration 2010). Continental hydrate 
mass estimates (encompassed by the pink region) tend to be about 1 
per cent of the marine estimates (Figure modified from Boswell and 
Collett (2011)). Estimates are given in Gigatonnes of carbon (GtC) for 
comparison with other organic hydrocarbon reservoirs (see Figure 
1.7). At standard temperature and pressure, 1 GtC (Gigatonnes of 
carbon) represents 1.9 Tcm (trillion cubic meters) of methane which 
has an energy equivalent of approximately 74 EJ (exajoules).
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Estimates of the global methane content in gas hydrates 
fell as researchers began linking gas hydrate occurrence to 
the supply of organic material from which methane could 
be generated. Since the early 1980s, global estimates have 
varied widely (blue region in Fig. 1.6), reflecting continued 
uncertainties regarding the amount of methane delivered to, 
and subsequently stored in, the hydrate stability zone (Buf-
fett and Archer 2004; Wood and Jung 2008).

Significant reduction of the uncertainty associated with 
global estimates will require additional mapping and coring 
to define local and regional patterns of gas hydrate distribu-
tion (Archer 2007) and to improve our basis for estimating 
porosity and gas hydrate saturation in unexplored regions. 
Such assessments are now underway, resulting in more 
rigorously constrained estimates for some of the world’s 
promising production regions (see Volume 2 Chapter 2), as 
well as for regions that are sensitive to climate change (see 
Volume 1 Chapter 3).

As shown in Figure 1.7, even a median estimate of 5 000 
Gt of methane carbon in methane hydrate represents a sig-
nificant fraction of the world’s organic carbon, and is of 
similar magnitude to the combined estimates of carbon in 
traditional global fossil fuel resources, such as oil, coal, and 
natural gas. Not only is the gas hydrate estimate uncertain, 
however, but not all gas hydrates are equally accessible as 
an energy resource (see Volume 2 Chapter 2) (Boswell and 
Collett 2011). Nonetheless, with annual global consump-
tion estimated at 1.8 Gt of methane carbon in 2011 and 
2.15 Gt in 2020 (U.S. Energy Information Administration 
2010), recovering even a small fraction of the methane in 
gas hydrates could significantly affect the global energy 
mix (see Volume 2).

Figure 1.7: Carbon mass in gas-hydrate-bound methane compared 
to other sources of organic carbon. A 2008 workshop estimated 
the global methane content in gas hydrates to range from 1 000 
to 10 000 gigatonnes of carbon (GtC) (Krey et al. 2009). Taking a 
midrange value of 5 000 GtC as an example, gas hydrates would 
account for ~33 per cent of Earth’s organic carbon (excluding 
dispersed carbon such as bitumen and kerogen). Other major 
carbon pools and their mass estimates in GtC are presented 
here in top-to-bottom order as they are displayed in the figure. 
Values for vegetation and non-frozen soil are taken from Sabine 
et al. (2004), frozen soils from Tarnocai et al. (2009), peat from 
Limpens et al. (2008b, a), detrital matter from Matthews (1997), 
and atmospheric values from Blasing (2013). All other values are 
from Sundquist and Visser (2003).
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The most visible gas hydrates in nature are massive mounds 
of solid hydrate, often many metres in diameter, exposed on 
the sea floor and frequently covered with thin drapes of sedi-
ment (Fig. 1.8, bottom row). These mounds mark locations 
where active fluid vents, or seeps, supply methane directly 
to the sea floor. Seeps provide the methane for gas-hydrate 
mounds to form and grow, but this growth must compete 
not only with temperature changes that can destabilize gas 
hydrate, but with erosion from the sea water itself, which is 
undersaturated in methane and will therefore dissolve ex-
posed gas hydrate (Lapham et al. 2010; Zhang et al. 2011). 
Gas hydrate mounds have been observed to decay, with 
chunks of hydrate breaking away from mounds and float-
ing away (MacDonald et al., 1994), but this is not a regular 
occurrence (MacDonald et al., 2005). Monitoring studies of 
gas hydrate mounds in the Gulf of Mexico (MacDonald et al., 
2005) and offshore of Vancouver Island at the Barkley Can-
yon site (Lapham et al. 2010) demonstrate that gas hydrate 
mounds can persist for several years at least, in spite of being 
continually dissolved by seawater and exposed to short-term 
increases in bottom-water temperature.

The vast majority of gas hydrates, however, lay buried in 
sediment. The sediment itself is 30 – 70 per cent pore space 
(Santamarina et al. 2001), and as shown in Figs. 1.8-1.10, 
the manner in which gas hydrates fill or alter that space can 
be quite different depending on the abundance of available 
methane and whether the sediment is sandy or more fine-
grained (Fig. 1.9).

Hydrate in sands
The relatively high permeability of sands facilitates the flow 
of water and methane needed for hydrate formation, and gas-
hydrates have been found filling more than 60 per cent of the 
available pore space with saturations as high as 90 per cent 
in some Arctic sands (Collett et al. 2009) (Fig. 1.10, class F), 

as high as 80 – 90 per cent in Gulf of Mexico sand bodies 
(Boswell et al. 2012) (Fig. 1.10 class C) and as high as 70 per 
cent in the sandy sections of interbedded sands and muds 
off Japan’s southeastern coast, on the margin of the Nankai 
Trough (Tsuji et al. 2004, 2009) (Fig. 1.10 class C). Though 
only approximately 10 per cent of the world’s gas hydrates 
likely occur in sands (Collett et al. 2009), the high gas hy-
drate concentrations that can be found in sands have made 
them research and development targets for potential gas hy-
drate exploration (see Volume 2).

Hydrate in fine-grained sediment
Marine drilling conducted initially on the Blake Ridge (off-
shore eastern United States) in 1995 (Paull et al. 1998) 
found gas hydrates occurring as microscopic pore-filling 
grains in fine-grained sediments (clays and muds) (Fig. 
1.10 Class E). These accumulations can cover large areas 
and extend through thick vertical sequences. It is generally 
believed the majority of Earth’s gas hydrates exist in this 
dispersed form (Boswell 2009), even though the concentra-
tions are typically low, ranging from 1 or 2 per cent to as 
high as 12 per cent of the pore volume. These low satura-
tions are probably due to the very small pore size and low 
permeability of clay-rich sediments, which greatly hinder 
the mobility of both gas and water. Gas hydrates likely form 
more readily in zones within these fine-grained environ-
ments where porous microfossils or slightly coarser grains 
provide a small increase in both porosity and permeability 
(Kraemer et al. 2000; Bahk et al. 2011). 

In areas where methane flux is particularly strong, it is pos-
sible for gas hydrates to accumulate to greater concentrations 
within clay-rich sediments. In 2006, drilling off the coast of 
eastern India revealed an approximately 150-metre-thick sec-
tion of fractured clay sediments with gas hydrate saturations 
of 20 to 30 per cent or more (Collett et al. 2008). An expedi-

1.4 WHAT FORMS DO
GAS HYDRATES TAKE IN NATURE? 
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Figure 1.8: A selection of gas hydrate forms observed in nature. Unless otherwise noted, gas hydrate is white, and sediment is dark. Top row: 
Pore-filling. Left, Mallik site, Canada (courtesy JOGMEC-NRCan-USGS), and centre, Nankai Trough, offshore Japan (courtesy JOGMEC), 
show high saturation in sandy sediments. Right (South China Sea, courtesy GMGS-01 Science Party) shows low to moderate saturation in 
fine-grained sediments. Middle row: Grain displacing in fine-grained sediments. Left: massive near-horizontal layers from offshore India 
(Courtesy NGHP-Expedition-01). Centre: array of thin, near-vertical veins from East Sea (Courtesy UBGH-01). Right: large nodule from 
Bay of Bengal (Courtesy NGHP-Expedition-01). Bottom row: Gas hydrates exposed at the sea floor. Left: massive sea-floor mound stained 
orange with oil in the Gulf of Mexico (Courtesy I. MacDonald). Centre: massive hydrate mass built from methane gas bubbles under a thin 
sediment layer at Blake Ridge, offshore USA (Courtesy Woods Hole Oceanographic Institution). Right: massive sea-floor mound offshore 
Vancouver Island, Canada (Chapman et al. 2004).

tion to the East Sea of Korea in 2007 found a similar occur-
rence (Park 2008). X-ray scans conducted on cores from both 
India and Korea, which were acquired and analyzed at in situ 
pressures (see Text Box 1.2), showed gas hydrates existing as 
sporadic lenses of solid hydrate within a pervasive network 
of thin, nearly vertical fractures (Holland et al. 2008; Rees et 
al. 2011) (Fig. 1.8 middle row). Although the mechanisms by 
which such accumulations form are not clear, it may be that 
comparatively vigorous gas migration within gas “chimneys” 
can disrupt the sediment enough to create the local perme-
ability needed for enhanced gas-hydrate formation (Fig. 1.10 
class A, B). It is not known how many such occurrences exist, 
but they could be quite abundant. In 2005, a well-logging ex-
pedition in the Gulf of Mexico found a roughly 30-metre in-
terval in which gas hydrates were observed to occupy numer-
ous near-vertical fissures within clay-rich sediments (Ruppel 
et al. 2008). In 2009, a similar gas-hydrate occurrence, about 
150 metres thick and widespread, was logged elsewhere in 
the Gulf of Mexico (Boswell et al. 2012). In both settings, the 
fissures occurred within distinct sedimentary layers and ap-
peared to be controlled by subtle changes in sediment prop-
erties. The interpreted gas hydrate saturations were generally 
low, ranging from 5 per cent to perhaps 10 per cent of the 
pore volume.

The large size and lateral continuity of typical gas hydrate oc-
currences in mud-rich sediments are conducive to the genera-
tion of anomalous and conspicuous features, seen in seismic 
data and called bottom-simulating reflectors (BSRs). Initially, 
BSRs were used widely to assess the distribution of gas hy-
drates (Shipley et al. 1979). However, recent drilling results 
from Japan (Tsuji et al. 2009) and the Gulf of Mexico (Shedd et 
al. 2012) have demonstrated that BSRs can appear in many dif-
ferent forms, and gas hydrates can even occur without a BSR 
(Paull et al. 1996). As discussed in Volume 2, Chapter 2, BSRs 
are therefore not considered reliable indicators of the nature 
or concentration of gas hydrates, and more sophisticated geo-
logical and geophysical exploration approaches are now being 
used (Tsuji et al 2009; Boswell and Saeki 2010).

As Chapters 2 and 3 in this volume illustrate, the varied geologic 
settings in which gas hydrates are found must be considered 
when evaluating the role of gas hydrates in natural systems such 
as the natural carbon cycle (Chapter 2), the link to chemosyn-
thetic sea-floor communities (Chapter 2), and past and future 
climate change (Chapter 3). In Volume 2, the implications of 
finding high hydrate saturations in sand layers or as veins in 
fine-grained sediment are discussed in terms of the reservoir’s 
accessibility and value as a potential energy resource.
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Figure 1.9: Summary of how the host sediment controls the form of gas hydrate occurrence. Gas hydrates are primarily found in 
unconsolidated sands (upper row) or clays (centre row). Hydrates also commonly occur in thin, hydrate-bearing sand layers separated by 
fine-grained sediment (upper right), and can even form in sands that have themselves been consolidated, or packed more tightly together, 
to form a rock (lower right). In clays, gas hydrates can exist in low concentrations in the small pores between grains (centre left). Gas 
hydrates in higher concentrations tend to displace grains to form veins, lenses, and nodules (centre right), and those veins, lenses or 
nodules can occasionally grow large enough to appear as a massive hydrate occurrences (lower left) (adapted from Boswell et al. 2011).
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Gas hydrates are now considered one of the largest 
storehouses of potentially mobile organic carbon on the 
planet. However, their very existence on Earth was not 
confirmed until the first samples were observed during 
scientific drilling programs in the early 1980s (see TEXT 
BOX 1.1). One reason gas hydrates eluded detection 
for so long is that the unique combination of high-
pressure/low-temperature conditions required for their 
stability is restricted to some of the more remote places 
on Earth, including in and beneath permafrost in Arctic 
regions and within the marine sediments of continental 
margins. Like water ice, when a gas hydrate is removed 
from the environment in which it is stable, it melts 
into a liquid water phase. Gas hydrate also releases its 
trapped methane gas in the process. Since gas hydrates 
achieve this phase change rather quickly, much of the 
gas hydrate present in specimens collected at or below 
the sea floor in conventional marine studies will have 
disappeared (dissociated) by the time the specimens 
arrive on deck for inspection. Only the largest solid 
masses persist long enough to be physically observed.

Initially, scientists developed special means to infer 
the presence of gas hydrates from the impact their 
dissociation has on the chemistry of the surrounding 
sediment: that is, the stronger the shift of pore-water 
salinity to fresher values as compared to the local 
background condition, the greater the gas-hydrate 
volume that had recently been present. In addition, 
infrared scanners are used to detect cold spots in 
recovered cores. These spots indicate where gas 
hydrates have been and where their melting has cooled 
the surrounding sediment. The ability to conduct direct 
measurements in situ using geophysical well-logging 
tools has advanced significantly (Tsuji et al. 2009), 
and currently much can be determined with great 
confidence using such tools, particularly when gas-
hydrate concentrations are high. Predicting gas-hydrate 
occurrence using remote sensing (such as seismic or 
electromagnetic surveys conducted from the surface) is 
possible, and this ability becomes more accurate with 
each detailed field study.

Box 1.2 Identifying gas hydrate in specimens of natural sediment

To fully assess gas-hydrate-bearing sediments, scientists have 
devised pressure-coring technologies that allow samples to 
be collected and retrieved without ever exiting gas-hydrate 
stability conditions. This technology continues to advance, 
with increasingly complex measurements being made on 
acquired samples. X-ray images taken of such samples have 
demonstrated the wide variety of forms gas hydrates can take 
in the subsurface, ranging from broadly disseminated pore-
filling grains to complex arrays of delicate tabular veins and 
fracture-filling forms (see Fig. TB-1.2) (Holland et al. 2008; 
Rees et al. 2011). Such measurements and images provide 
critical ground-truth data to confirm the impact of gas-hydrate 
occurrence on the physical properties of the sediment.

Figure TB-1.2: X-Ray-computed tomography images for gas-
hydrate-bearing clays from the Krishna-Godavari Basin offshore 
eastern India. Gas hydrates are shown in white, clay is shown 
in grey, and blue represents ice. (A) Gas hydrates are generally 
observed as near-vertical veins in this 90-centimetre-long core. 
The diameter is 5.7 centimetres (Holland et al. 2008). (B) In 
this micro-computed tomography scan (Rees et al. 2011), a 
23-centimetre-long sample, also 5.7 centimetres in diameter, 
illustrates how the large gas hydrate veins observed in the full-
core scan are themselves made up of small, interconnected veins. 
Ice has formed in this specimen during sample transfer and 
handling, and it is not representative of the in situ environment, 
which is well above the freezing temperature of water. (C) A 
natural-light image of gas-hydrate-bearing clay from the region.

BA C
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Figure 1.10: General schematic showing typical modes of gas hydrate occurrence relative to the geologic environment. Thin (A) and thickly 
veined (B) sediment-displacing gas hydrates (white) in fine-grained sediment (grey); (C) pore-filling gas hydrates in sand; (D) gas hydrate 
mounds on the sea floor (hydrate has an orange coating from oil and is draped with grey sediment); (E) disseminated gas hydrates (white 
specks) in fine-grained sediment (grey); (F) gas hydrates (white) in coarse sands (grey) (adapted from Boswell 2011).
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Methane is a significant component of the near-surface glob-
al carbon pool, and it can exist as a free gas, dissolved in wa-
ter, or held in gas hydrate. Prior to the Industrial Revolution, 
methane accounted for 0.05 Gigatonnes of carbon (GtC) in 
the oceans, and 1.5 GtC in the atmosphere (Sundquist and 
Visser, 2003). Modern estimates suggest methane now ac-
counts for 3.7 GtC in the atmosphere (IPCC, 2007). By com-
parison, midrange estimates discussed in Volume 1, Chapter 
1 suggest global methane hydrates sequester ~5000 GtC, rep-
resenting about a third of the ~15 000 Gt of organic carbon 
near the Earth’s surface. Methane in hydrates also accounts 
for approximately 10 per cent of the total near-surface carbon 
pool (organic and inorganic), which is on the order of 41 000 
GtC, with another 5 000 to 10 000 GtC held in coal, gas and 
oil (Houghton, 2007).

This chapter focuses on the marine environments, where ~99 
per cent of the Earth’s methane hydrate exists (See Volume 1, 
Chapter 1). A summary of how and where methane is formed 
and consumed is presented, along with a discussion of how 
gas hydrates, and also sea floor chemosynthetic communities, 
fit into methane’s contribution to carbon cycling between the 
atmosphere, hydrosphere, geosphere, and biosphere.

2.1 INTRODUCTION

Figure 2.1: Global carbon cycle. Carbon moves through the 
atmosphere, biosphere, geosphere, and hydrosphere. Gas hydrates 
(orange) are shown in marine sediments, but are also buried beneath 
permafrost sediment in Arctic regions. The 5 000 GtC cited for gas 
hydrates is a midrange estimate from recent global assessments, 
and the ~.004 GtC/year carbon flux from hydrates is taken from 
the Intergovernmental Panel on Climate Change (IPCC, 2007). All 
other values are compiled from Houghton (2004). Although gas 
hydrates are a significant global carbon pool, the precise amount 
of carbon, the amount of carbon released from gas hydrates to the 
atmosphere, and the extent to which that release could increase as 
the global climate changes are all under active debate. Improving 
upon the values for gas hydrates used in this figure will require 
extensive mapping and research efforts around the world.
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Methane is the third-most abundant greenhouse gas in 
Earth’s atmosphere, after water vapour and carbon diox-
ide. Although the concentration of carbon dioxide in the 
atmosphere is more than 200 times that of methane (Blas-
ing 2013), the impact of methane is magnified because it 
is about 23 times more potent than carbon dioxide as a 
greenhouse gas. This potency is related to methane’s radia-
tive forcing capacity, which refers to the ability of a gas to 
absorb and trap heat radiating off Earth’s surface (Lacis et 
al. 1981; Hansen et al. 1988). Methane has a relatively short 
lifetime in the atmosphere (Boucher et al. 2009), because 
within about a decade, a combination of sunlight and chem-
ical processes cause methane molecules in the atmosphere 
to break down to water and carbon dioxide, the two most 
abundant greenhouse gases. 

As reviewed by the IPCC (2007), the total flux of meth-
ane carbon to the atmosphere from all sources is currently 
around 0.45 GtC/year, or 450 TgC/year (Tg = 1012 grammes) 
(See Fig. 2.2). This flux is more than double the pre-indus-
trial flux, and about 70 per cent of the emissions are due 
to human activity (Reeburgh 2007; Colwell and Ussler III 
2010). Gas hydrates are estimated to account for only about 
1 per cent of the annual methane emissions to the atmos-
phere (Forster et al. 2007), but as discussed below, hydrates’ 
true methane contribution is not precisely known.

Since most methane hydrates occur in marine sediments at 
water depths greater than ~500 metres, a key factor affect-
ing how much methane released from dissociating gas hy-
drates reaches the atmosphere is the efficiency of transfer-
ring methane through the water column. For most bubbles 
released from the sea floor at water depths greater than 100 
meters, the methane will be replaced by other gases during 
bubble ascent, and the methane will dissolve in the surround-
ing waters (McGinnis et al. 2006) and can be consumed by 
microbes (see Section 2.2.2). Direct transfer of methane to 

the atmosphere via bubbles is most relevant in shallow lakes, 
estuaries, and river deltas, and on continental shelves. Only 
in the case of Arctic Ocean continental shelves (Shakhova et 
al. 2010; Biastoch et al. 2011) could these methane release 
processes at shallow water depths be related to gas hydrates. 

In special cases, gas hydrate could play a role in enhancing 
transport of methane to the ocean-atmosphere interface. 
For example, bubbles released from the sea floor within the 
gas hydrate stability zone (greater than 500 metres) could 
form gas hydrate shells in the water column. With such ar-
mouring, the bubbles may retain methane to shallower wa-
ter depths during bubble ascent. Another enhanced transfer 
mechanism involves chunks of gas hydrate, which can occa-
sionally break off from sea floor gas hydrate mounds (Mac-
Donald et al. 2005). Because gas hydrate is buoyant, these 
chunks may reach the sea surface relatively intact before 
releasing their methane. Sea floor gas hydrate mounds are 
not widespread, and this process is not an important factor 
in transfer of methane to the atmosphere. (For additional 
discussion of bubble transfer, see Volume 1 Chapter 3).

2.2.1 MARINE METHANE SOURCES: HOW IS 
METHANE PRODUCED?

Most methane that reaches the Earth’s surface is produced 
by microbial activity in sediments, where a special group of 
archaea called methanogens produce methane via anaero-
bic (without oxygen) decomposition of organic material. 
Intense heating of organic carbon also produces hydrocar-
bon liquids (e.g., petroleum) and gases, including methane. 
These formation mechanisms are summarized here.

Microbial methane production
Methanogens generate methane in organic-rich sediments 
in many settings (e.g., marshes, rice paddies, estuaries, 
landfills, river deltas, and continental margins). We focus 

2.2 METHANE GENERATION
AND CONSUMPTION
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Figure 2.2: Primary methane emissions to the atmosphere per year. Methane emissions due to human-related activities, shown to the right 
of the volcano, account for approximately 70 per cent of the total emissions (Reeburgh 2007; Colwell and Ussler III 2010). Gas Hydrates 
are currently estimated to contribute about 5 Tg (Tg = 1012 grammes) of methane (3.5 Tg carbon) per year to the atmosphere (IPCC, 2007). 
Emission rates for gas hydrates are highly speculative, however, and may overestimate the atmospheric methane contribution by not 
fully accounting for methane consumed by microbes in the sediment and water column (Fig. 2.3). Additional research will be required to 
constrain the methane flux from gas hydrates that reaches the atmosphere.
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here on continental margin settings, which combine the 
appropriate pressure and temperature conditions for meth-
ane hydrate formation with regions of high sedimentation 
rates and elevated “primary productivity,” which is the 
rate at which organic carbon is produced in surface waters 
(Reeburgh 2007). As discussed in Volume 1, Chapter 1, the 
rapid burial of organic carbon that “rains” to the sea floor 
can promote microbial breakdown of that organic mate-
rial, with methane as a key by-product. At the appropriate 
pressure and temperature conditions, this methane can be 

incorporated into methane hydrates within the sediments, 
usually at water depths greater than ~500 m. Because the 
combination of high primary productivity and high organic-
carbon burial rate is mostly confined to continental margins 
(Hedges and Keil 1995; Buffett and Archer 2004), continen-
tal margins host most of the world’s gas hydrate while sedi-
ments of deep ocean basins are relatively free of methane 
hydrate, even though the deep-ocean pressure and tempera-
ture conditions are suitable for gas-hydrate formation (See 
Volume 1 Chapter 1).

Methane dissolved in pore water and sulphate are biologically 
converted to bicarbonate, hydrogen sulphide and water

Methane and oxygen are biologically and chemically 
converted to carbon dioxide near the sea �oor 
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Figure 2.3: Methane consumption in the environment. Near sea-floor methane hydrate is being continuously broken down, releasing 
methane dissolved in pore water. As methane moves through sediment into the water column and atmosphere, it is consumed in a variety 
of chemically and microbially controlled reactions. As listed on the left, dissolved-phase methane can then be consumed by microbes 
as part of an extended chemosynthetic food chain (see also Fig. 2.7) or consumed chemically. As shown on the right, gaseous methane 
can bypass the microbially controlled reactions in the sediment because microorganisms can access only dissolved methane (Treude et 
al. 2005b; Treude and Ziebis 2010). Methane in bubbles entering the water column tends to dissolve into the water, where it can then 
be consumed by aerobic microbes. The methane “biofilter” removes much of the methane that would otherwise be transported into the 
atmosphere. Figure is not drawn to scale. For hydrates in the marine environment, the water depth (Zone 3) would generally be 300-500 
metres or more, Zone 2 would be on the order of 1 centimetre thick, and Zone 1 would be on the order of 10 metres thick.
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Thermal methane production
Organic material must be buried beneath a few thousand 
metres of sediment to reach the temperatures necessary to 
produce methane at significant rates. A portion of the hy-
drocarbons formed at depth can migrate up toward the sea 
floor via faults, fractures, and high permeability sediments. 
Along the way, the gases can become trapped in subsurface 
structures, be incorporated into gas hydrates, or be released 
via seeps at the surface. Thermogenic methane, and the 
associated methane hydrates, are most common in active 
petroleum areas, such as the Gulf of Mexico (Sassen et al. 
2001; Boswell et al. 2012).

2.2.2 MARINE METHANE SINKS: THE 
CONVERSION OF METHANE TO OTHER 
FORMS OF CARBON

Methane can be removed from the global inventory through 
biological, chemical, and physical sinks (summarized in 
Fig. 2.3) (Reeburgh 2003). For example, in the atmosphere, 
methane oxidizes to carbon dioxide in about ten years due to 
a photolytic process. For methane in the marine realm, the 
primary methane sinks are anaerobic (without oxygen) oxida-
tion of methane (AOM) and aerobic (with oxygen) oxidation 
of methane. On present-day Earth, AOM probably dominates 
on a global basis (Dickens 2003; Reeburgh 2007). 

Anaerobic oxidation of methane (AOM): 
Microbes that consume methane without 
needing oxygen
Microorganisms consume an estimated 80 to 90 per cent of 
the methane that reaches shallow sub-sea floor sediments (Ree-
burgh 1996; Dickens 2003; Reeburgh 2007). The primary sink 
for this methane is AOM (Zone 1 in Fig. 2.3), a reaction that is 
accomplished by a consortium of two types of microorganisms: 
methanotrophic archaea (called ANME from anaerobic metha-
notrophs) and sulphate-reducing bacteria (Knittel and Boetius 
2009). Sulphate, which is abundant in seawater, penetrates the 
sediments and is consumed in the methane oxidation process. 
The thickness of Zone 1 in Fig. 2.3 is related to the rate of AOM 
and the upward flux of methane. This zone can be thin (< 10 
metres) where upward methane flux is high and thicker in ar-
eas of low methane flux (Borowski et al. 1999; Davie and Buf-
fett 2003; Treude et al. 2003; Kastner et al. 2008).

Some methane can still escape the sediment AOM sink. 
Where methane flux is very high, such as in fault zones or 
at mud volcanoes, sulphate cannot penetrate the sediment 
(Niemann et al. 2006; Joye et al. 2009). In these locations, 
AOM is not an efficient benthic filter, and methane vents 
directly into the water column (MacDonald et al. 2002; Liu 
and Flemings 2006; Solomon et al. 2008). 

Aerobic oxidation of methane: Microbes that 
consume methane but also need oxygen 
A second sink for methane is aerobic oxidation. This process 
occurs in near-sea-floor sediments that contain both oxygen 
and methane (Zone 2 in Fig. 2.3), consuming some of the 
methane that remains following AOM (Sommer et al. 2006; 
Ding and Valentine 2008). Aerobic oxidation of methane is 
also a dominant methane sink in the water column (Zone 3 
in Fig. 2.3) (e.g. Mau et al. 2007), but the accompanying pro-
cesses remain poorly understood outside a few areas where 
sensitive radiotracer techniques have been applied. 

Aerobic methane oxidation is believed to be carried out by 
methanotrophic bacteria that use methane as their sole 
source of energy and as a primary source of structural car-
bon (Hanson and Hanson 1996). A fraction of the oxidized 
methane is converted to bacterial biomass, while the re-
mainder is released as dissolved inorganic carbon. In con-
trast to AOM, which has bicarbonate as its main inorganic 
carbon product, aerobic oxidation of methane yields primar-
ily carbon dioxide, which increases ocean acidity (See Text 
Box 2.1). In the water column, aerobic methane oxidation 
requires time and space for microbes to effectively consume 
methane. As reviewed by Hu et al. (2012), aerobic oxidation 
is quite efficient when methane is diffusing through water 
deep enough to stabilize gas hydrates (300-500 metres).
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Methane consumption by methane-eating microbes in sediments 
and in the water column is an important global mechanism that 
prevents methane from reaching the atmosphere. There are two 
main processes by which methane is consumed: aerobic and 
anaerobic methane oxidation. But do these processes generate 
ecological issues of their own?

Aerobic oxidation of methane consumes both oxygen and methane 
to produce carbon dioxide. Excessive oxygen consumption, 
particularly in the deep ocean where it is not easily replenished, 
can be detrimental to oxygen-breathing life forms. Carbon dioxide 
dissolves in water to form carbonic acid, acidifying the water. In 
theory, if methane vents rapidly into the water column, aerobic 
oxidation of methane could cause significant local decreases in 
oxygen levels and increased acidity (lower pH values, see Fig. TB2.1 
for an example of potential acidification effects). 

There are indications in the geologic record that massive methane 
releases from gas hydrates might have driven ocean acidification 
in the past (Zachos et al. 2005; Pelejero et al. 2010). Model 
predictions for the future (Biastoch et al. 2011) suggest that 
methane consumption could lead to pH values dropping by up to 
0.25 units within the next century in some deep areas of the Arctic 
Ocean. In addition, microbial consumption of methane could 
decrease local bottom-water oxygen concentrations by up to 25 
per cent. Regional methane-induced sea-water acidification from 
the sea floor would occur, in addition to ocean-wide acidification 
caused by the uptake of anthropogenic carbon dioxide from the 
atmosphere. The combined effect of the two processes would 
accelerate acidification in parts of the Arctic Ocean, including in 
deeper waters. Research has so far been based on the premise of 
a projected pH decrease due to the anthropogenic carbon dioxide 
uptake of about 0.3 units by the end of this century. Methane-
induced acidification could nearly double the pH decrease in parts 
of the Arctic Ocean (Biastoch et al. 2011).

The effects of anaerobic oxidation of methane (AOM) in sediments 
are not as easily predicted. AOM consumes no oxygen and produces 
bicarbonate instead of carbon dioxide (Barnes and Goldberg 1976). 

Box 2.1 Could microbial methane oxidation boost acidification and oxygen 
depletion in the ocean?

However, sulphide, another end-product of AOM, might be re-
oxidized with oxygen by chemoautotrophic organisms (Jørgensen 
and Nelson 2004) or simply through abiotic chemical reactions. 
So although the microbial process itself does not directly consume 
oxygen, consumption occurs during re-oxidation of sulphide at the 
sediment-water interface.

Figure TB-2.1: Potential effects of ocean acidification on marine 
organisms. The planktonic coccolithophore Calcidiscus leptoporus 
cultured under present-day carbon dioxide conditions (pCO2 ~380 
µatm, left panel) and under conditions projected for the end of this 
century, assuming business-as-usual carbon dioxide emissions 
(pCO2 ~780 µatm, right panel). With increasing carbon-dioxide-
induced ocean acidification, the energetic costs of calcification go 
up. While some organisms are able to compensate for this, others 
find it increasingly difficult to produce their carbonate shells and 
skeletons (courtesy Ulf Riebesell, GEOMAR, Kiel)).
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Field studies show dissolved oxygen is strongly depleted in some 
coastal areas and marginal seas, such as the Black Sea and Baltic 
Sea, as well as at poorly ventilated and highly productive continental 
margins. Observational data show the volume of these depleted 
water masses has expanded significantly in recent decades 
(Stramma et al. 2008). Models predict the ongoing oxygen loss 
at continental margins will be amplified over the coming century 
in response to anthropogenic carbon dioxide emissions (Oschlies 
et al. 2008). Most fauna living at the sea floor depend on oxygen 

and will vanish when dissolved oxygen concentrations in ambient 
bottom waters fall below a critical threshold value. The spread of 
low-oxygen conditions is, therefore, a serious threat to fauna living 
at the sea floor of the affected continental margin areas. Although 
field studies have not yet demonstrated significant pH decreases 
or oxygen depletions in the vicinity of methane seeps, it is possible 
these effects may take a long time to become apparent. Baseline 
studies might be needed in order to understand these slow 
environmental degradation issues.
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The presence of gas hydrates generally strengthens the host 
sediment. When gas hydrates break down into water and 
free methane gas, however, what are the consequences for 
sediment stability? 

When gas hydrate dissociates, the released gas and water occupy 
a greater volume than they do in the solid hydrate structure. 
This expansion means gas hydrate dissociation in sediment can 
increase pressure in the pore space (McIver 1982; Kayen and 
Lee 1991; Xu and Germanovich 2006), weakening the sediment 
by pushing sediment grains apart. It has been suggested that 
dissociated gas hydrate could form a fluid- and gas-rich glide 
plane, upon which the overlying sediment might be able to slide 
(see Fig. TB-2.2) (McIver 1982). The slide-triggering, gas-hydrate 
dissociation might itself be brought on by a pressure decrease 
due to an earthquake (Bugge et al. 1987), a drop in sea level 
(Maslin et al. 2004), or a temperature increase due to rising 
bottom-water temperatures (Dickens et al. 1995).

Gas hydrates have been tied to submarine slides the world 
over, including the colossal Storegga slide offshore Norway 
(Bugge et al. 1987), along the western Atlantic Margin (Booth 
et al. 1993; Lee 2009), offshore Brunei (Gee et al. 2007), and 
on many other continental slopes around the world. While gas 

Box 2.2 Can gas hydrate breakdown trigger submarine slides?

hydrates may have played a role in some isolated slides (Lopez et 
al. 2010), definitive proof of gas hydrate dissociation substantially 
contributing to major submarine slides remains elusive, even for 
the heavily-studied Storegga slide (Mienert, 2008). There are two 
drawbacks to the gas-hydrate triggering mechanism theory:
1. Because sediments are generally permeable (meaning fluid can 

flow through them to some extent), gas hydrate dissociation 
may simply push fluid and gas away from the dissociation site 
without generating any significant pressure increase. Bouriak 
et al. (2000) suggest that, for the Storegga slide, gas hydrate 
dissociation would only have increased the pore pressure by 0.2 
per cent, not enough to trigger a slide.

2. The distribution of gas hydrates seldom coincides with the initial 
slide failure location or the glide plane along which the sediment 
subsequently slides. The Storegga slide, for example, began at the 
toe of the slide (Kvalstad et al. 2005). Gas hydrates were likely 
to be dissociating in much shallower water, landward toward the 
slide headwall (Mienert et al. 2005). Moreover, the non-uniform 
distribution of gas hydrates does not coincide with the slide 
surface, so gas hydrate dissociation did not provide a glide plane 
for the Storegga slide (Bryn et al. 2005; Kvalstad et al. 2005). 

An alternative gas hydrate breakdown mechanism, in which the 
topmost gas hydrates dissolve in response to sea-floor warming, has 

Methane is a dynamic component not just of the sub-sea-floor 
environment, but the global environment as a whole. The role 
of gas hydrate in the movement of methane through the global 
carbon cycle can be visualized by characterizing the gas hy-
drates as a methane “capacitor” (Dickens 2001; Dickens 2003; 
Dickens 2011). Like a capacitor in an electrical network, gas 
hydrates can become charged with methane over time and also 
discharge, releasing a significant quantity of methane. 

2.3 A GAS HYDRATE CAPACITOR IN
THE GLOBAL CARBON CYCLE?

Under steady-state conditions, methane slowly enters the 
gas hydrate stability zone through organic carbon degrada-
tion, methane production, and methane migration. Meth-
ane slowly leaves this volume through gas hydrate dissocia-
tion, gas hydrate dissolution, AOM, venting, and burial. If 
methane inputs to gas hydrate exceed methane outputs, 
gas hydrate volumes grow as long as pore water is available; 
otherwise, they shrink. Gas hydrates, therefore, can act as a 
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Figure TB-2.2: Schematic of a submarine slide triggered by 
gas hydrate dissociation. In theory, gas pressure generated by 
methane released during gas hydrate dissociation weakens the 
sediment and provides a glide plane for sediment failure. In 
practice, gas hydrates are rarely located at sites where slides 
initially fail, nor are gas hydrates generally distributed uniformly 
over large enough spatial scales or in the proper orientation 
to provide effective glide planes for submarine slides. (Figure 
modified from McIver (1982)).

been proposed by Sultan et al. (2004) as a method of weakening the 
sediment to the point where a slide, such as Storegga, would initially 
fail near its toe. However, other recognized geologic phenomena are 
often sufficient to explain large slides, including earthquakes in areas 
where rapid sediment deposition creates vulnerable slopes (Bryn 
et al. 2005) and over-steepening of slopes due to localized tectonic 

uplift (Hornbach et al. 2007). Although gas hydrate dissociation 
may not trigger major submarine slides, it might contribute to 
the slide’s shape. In the Storegga slide scar, for example, the slide 
headwall coincides with the location at which gas hydrates are 
thought to have been susceptible to environmental change about 
8 200 years ago, when the slide occurred, (Mienert et al. 2005).

sink, sequestering methane as the hydrate forms, or act as a 
source, releasing methane as the hydrate breaks down.

Currently, the global methane hydrate capacitor is thought to 
be relatively stable – with balanced methane inputs and emis-
sions from natural gas-hydrate reservoirs. Local variations are 
possible, with gas hydrates in some areas of the globe acting 
as methane sinks, while others in different environments 

may be acting as methane sources (one potential source be-
ing methane released from hydrate in submarine slides, as 
discussed in Text Box 2.2). The relatively simple gas hydrate 
capacitor concept is not intended to capture the complete, 
interconnected system of controls on gas hydrate formation, 
but it does provide a useful analogy for discussing how gas 
hydrate volumes change over time in response to natural en-
vironmental conditions (see Volume 1, Chapter 3).
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Figure 2.4: Bacterial mats associated with gas hydrates. White and orange mats of sulphur-oxidizing bacteria cover sediments with near-surface 
gas hydrates at Hydrate Ridge, Northeast Pacific Ocean (Courtesy of Lisa Levin, Scripps Institution of Oceanography).

Sea floor cold seeps emit methane and sometimes other gases 
into the overlying water column. Some cold seeps are associated 
with gas hydrates, while others occur at water depths too shallow 
for gas hydrate to be stable. At these seeps, methane and other 
fluids are transported to the sea floor through conduits created 
by over pressurization, leakage of deep gas reservoirs, salt dome 
accommodation, mud volcano emplacement, and tectonic pro-
cesses (Judd et al. 2002; Suess 2010). Methane seeps are often 
characterized by specialized life forms whose metabolism is 
based on chemosynthesis (Levin 2005; Suess 2010) (see Text 
Box 2.3), and these cold-seep environments are distinct from 
those associated with hydrothermal vents at mid-ocean ridges.

The presence of near-surface hydrates at a methane seep tends 
to spread the methane release over a larger sea floor area, 
while also increasing the amount of methane dissolved in the 
pore water. This dissolved methane is more easily consumed 
by the chemosynthetic community than is the gaseous meth-
ane that can bypass chemosynthetic communities by venting 
through focused gas channels outside the hydrate stability 

zone (Treude and Ziebis 2010). Near-surface gas hydrates may 
also enhance the formation of carbonate pavements in the 
sediment, produced by anaerobic oxidation of methane (AOM) 
(Bohrmann et al. 1998). These carbonates, after erosion and 
exposure, become secondary habitats for deep-sea organisms 
(e.g. Paull et al. 1984). In this chapter, we will not discriminate 
between methane-seep life forms found in the presence or ab-
sence of near-surface gas hydrates, because their adaptations 
and survival strategies are almost identical.

Because methane seeps associated with gas hydrates were 
discovered 30 years ago (Paull et al. 1984), their investiga-
tion is still in its infancy. Our knowledge of these systems 
– especially those located on continental margins – is slowly 
increasing with the advance of deep-sea technologies. Never-
theless, we know these ecosystems can be relatively common 
features along certain continental margins and in tectoni-
cally active areas of the sea floor. Investigations of terrestrial 
seep fossils (i.e., authigenic carbonates that are now exposed 
on land and believed to have formed along the sea floor at 

2.4 LIFE AT MARINE
METHANE SEEPS
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methane seeps) imply that such sea-floor ecosystems have 
been occurring for millions of years (Goedert and Benham 
2003; Peckmann and Thiel 2004).

2.4.1 OVERVIEW OF CHEMOSYNTHETIC 
COMMUNITIES AT METHANE SEEPS

Chemosynthetic communities found at methane seeps in-
clude both microorganisms and animals that depend on 

The term chemosynthesis refers to metabolisms that obtain 
energy to create biomass by using chemical energy through 
reduction-oxidation reactions. If the carbon source used to 
form the biomass is inorganic (carbon dioxide), the organisms 
are called chemoautotrophs. Chemoautotrophs are different 
from photoautotrophs, organisms that use light energy 
through photosynthesis to obtain energy for growth from 
carbon dioxide. Chemoautotrophs are bacteria, exclusively. 
Animals that live symbiotically with chemoautotrophs are called 
chemosymbiotic organisms. Animals (including humans) that 
feed on algae, plants, or other animals are called heterotrophs. 

Famous examples of chemosymbiotic animals are the giant 
tubeworms, clams, and mussels thriving on chemical energy 
in the permanent darkness of hydrothermal vent systems 
and methane seeps (Corliss et al. 1979; Felbeck 1981; Levin 
2005). These ecosystems are often described as functioning 
completely independent of sunlight, especially when located in 
the deep sea. At first glance, this statement appears correct, 
because primary producers at the basis of these ecosystems 
gain energy and carbon from inorganic compounds, even in 
the absence of light. However, the chemicals needed to oxidize 
energy-rich molecules such as hydrogen sulphide, are oxygen 
and nitrate. Both were rare in ancient oceans. Only through 
photosynthesis did oxygen accumulate and react with reduced 
nitrogen compounds to form nitrate. 

Hence, modern complex chemosynthetic ecosystems, especially 
those with higher organisms, are not completely independent 
of sunlight. They depend on compounds produced directly or 
indirectly through photosynthesis. This dependence is even 

Box 2.3 What is chemosynthesis?

stronger at seeps, where methane, and sometimes petroleum, 
form the basis for chemosynthetic food chains. Both are often 
fossil-transformation products of photosynthetically produced 
organic matter.

Figure TB-2.3: Near the sea floor above active methane seeps, 
gas hydrate can form mounds such as that pictured above in 
the Gulf of Mexico. The gas hydrate mound is tinted orange 
by small amounts of oil, and is partially covered by a thin 
sediment drape (grey material). (Courtesy of Ian MacDonald).

hydrogen sulphide, which is a by-product of AOM (Paull et 
al. 1984; Sibuet and Olu 1998; Levin 2005), as well as ani-
mals that directly consume methane (Childress et al. 1986; 
Schmaljohann and Flugel 1987). Free-living chemosynthetic 
bacteria include sulphur bacteria such as Beggiatoa, Thiop-
loca, or Thiomargarita (Jørgensen and Nelson 2004), as well 
as aerobic methane-oxidizing bacteria. Filamentous sulphur 
bacteria can sometimes form extensive white or orange mats 
on the sediment surface (Fig. 2.4). 
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Figure 2.5: Cold-seep organisms. Examples from the methane seep ecosystem. A, C, E and F are chemosymbiotic animals whose energy source 
is hydrogen sulfide produced by methane-degrading microorganisms in the sediment. A: vestimentiferan tubeworm – Lamellibrachia barhami, B: 
lithodid crab embracing tube cores placed in a field of vesicomyid clams and bacterial mat C: solemyid clam – Acharax sp. D: Snail – Neptunea 
amianta and their egg towers attached to rock. E: Yeti crabs – Kiwa puravida, the ‘fur’ on their claws is filamentous symbiotic bacteria which they 
nourish by waving in sulphide-rich fluids, and then consume F: Thyasiridae, Quepos Seep (400 m water depth), Costa Rica margin G: Alvinocarid 
shrimp, Mound 12, Costa Rica margin (1 000 m water depth) (Photos courtesy of Greg Rouse and Lisa Levin, Scripps Institution of Oceanography).
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Chemosymbiotic animals at methane seeps can be large or 
small, form bushes, dense beds, reefs, or live alone, and they 
can grow very quickly or exceptionally slowly. Animal commu-
nities at methane seeps include single-celled organisms (pro-
tozoans) and multi-celled animals (metazoans). Most of the 
metazoans are invertebrates. Many are sustained, one way or 
another, by microbial activity linked to methane. Common ex-
amples include vestimentiferan tubeworms (Fig. 2.5, A), crabs 
(Fig. 2.5 B, E), and a diversity of clams (Fig. 2.5, C, F). 

All of these taxa are relatively large compared to non-seep, 
deep-sea fauna. Many seep-endemic organisms have reduced 
or absent digestive systems. Instead, they provide homes to 
symbiotic chemoautotrophic bacteria that provide the host 
with nutrition through aerobic sulphide and/or methane oxi-
dation (Fig. 2.6). 

The seeps and seep organisms support a wealth of grazing, 
predatory, and deposit-feeding taxa by providing substrate for 
attachment, access to reduced compounds, entrainment of 
organic-rich particles, and access to microbial protozoan or 
metazoan prey (Carney 1994; Cordes et al. 2010). Additionally, 
the carbonates (limestone is a type of carbonate) precipitated 
by microbial AOM consortia form crusts, rocks, boulders, 
and even vast landscapes at seeps (Teichert et al. 2005). These 
seeps can support high densities of mussels, tubeworms, and 
grazing gastropods (Olu-Le Roy et al. 1996; Levin et al. 2010).

Because the chemosynthetic life forms described here re-
quire different chemical balances and concentrations of 
methane and sulphide (Sibuet and Olu-Le Roy 1998; 2003; 
Levin 2005), distinct habitat patches form in response to the 
fluid chemistry and fluid flow rate (flux). Generally, sedi-
ments covered with mats of sulphur-oxidizing bacteria are as-
sociated with the strongest fluid and methane fluxes or near-
surface gas hydrates. Mussel and vesicomyid clam beds are 
associated with high to moderate fluxes. Solemyid clam beds, 
as well as vestimentiferan frenulate tubeworm fields, are as-
sociated with lower oscillating fluxes or deeper gas hydrates 
(Fig. 2.7) (Sahling et al. 2002; Sibuet and Olu-Le Roy 2003; 
Levin 2005; Sommer et al. 2006). Such connections have 
been documented in several methane-seep environments 
(e.g. Van Dover et al. 2003; Olu-Le Roy et al. 2007; 2009). 
The combination of microbial mats, the beds, bushes, and 
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Figure 2.6: Symbiotic relationships for obtaining energy from 
sulphide. Morphology of a tube worm (top) and photo of a clam 
hosting sulphide-oxidizing symbionts (bottom, photo courtesy of 
Greg Rouse, Scripps Institution of Oceanography). Tube worms 
host their symbionts in the trophosome, a specialized organ. 
Oxygen (O2), sulphide (HS–), and carbon dioxide (CO2) are taken 
up from the surrounding water through the animal’s plume and 
delivered via the blood stream to the symbionts. Clams harbour 
their symbionts in their gills. Oxygen and carbon dioxide are 
available from the surrounding water, and sulphide is taken up 
from the sediment through the clam’s foot.
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on gas hydrates in the Gulf of Mexico. Studies suggest the 
ice worm consumes free-living microbes associated with the 
hydrate and that the worm’s activities, which involve forming 
depressions and creating small-scale water currents at the 
hydrate surface, may promote microbial growth and speed 
hydrate decomposition. The association of the ice worm with 
gas hydrates occurs both at the sediment-water interface and 
at least 10 centimetres below the surface. 

Aside from the Gulf of Mexico, there has been limited di-
rect sampling of massive methane hydrates to assess meta-
zoan associations. Exposed methane hydrate at Hydrate 
Ridge does not appear to be directly colonized by metazo-
ans (Boetius and Suess 2004), although the presence of gas 
hydrates supports dense, colourful bacterial mats that can 
lead to high densities of infauna (animals living inside the 
sediment) in the near vicinity (Sahling et al. 2002; Levin et 
al. 2010; Vanreusel et al. 2010). The gas hydrates just below 
bacterial mats at Hydrate Ridge may actually act as a barrier, 
blocking some of the digging clams, tubeworms, and other 
species (Sahling et al. 2002).

2.4.2 SENSITIVITIES OF METHANE-SEEP 
COMMUNITIES TO CLIMATE CHANGE AND 
GEOLOGICAL VARIATIONS

There are indications in the geological record that warming/
cooling trends and oscillations in eustatic sea level could in-
fluence methane hydrate stability, authigenic carbonate for-
mation, slope stability, and, in turn, the abundance of seep 
habitats (Jiang et al. 2006; Archer 2007; Kiel 2009). Undersea 
earthquakes, such as the Grand Banks earthquake, can also 
produce methane seeps and chemosynthetic habitats (Mayer et 
al. 1988). It is, so far, unknown how the gas-hydrate response 
to ongoing climate change (Discussed in Volume 1, Chapter 
3) will affect chemosynthetic communities. Dissociation could 
create completely new habitats by increasing methane seepage, 
or rapid gas hydrate dissociation and disappearance might de-
crease the horizontal extent of existing seep habitats.

fields formed by the engineering/foundation species and the 
microbially-precipitated carbonates, creates a heterogeneous, 
highly patchy habitat structure that contributes significantly 
to the overall biodiversity of seep ecosystems and continental 
margins (Cordes et al. 2010; Vanreusel et al. 2010).

The animals present at cold seeps are rarely in direct contact 
with gas hydrates. Only a single large taxon, the ice worm 
Hesiocaeca methanicola (See Chapter 1, Fig. 1.2) (Desbruyeres 
and Toulmond 1998; Fisher et al. 2000), has been document-
ed to live directly in or on methane hydrates. This species 
attains relatively large size (2–4 centimetres) and occurs at 
high densities (2 500 to 3 000 individuals per square metre) 

Figure 2.7: Chemosynthetic habitats. Chemosynthetic habitats 
generated by different fluid flow rates, including transport of 
methane, as well as the sulphide resulting from anaerobic oxidation 
of methane (AOM), are colonized by different fauna. Left: free-living, 
sulphur-oxidizing bacteria mats (e.g., Beggiatoa spp.) in sediments 
with highest fluxes. Centre: vesicomyid clams (e.g., Calyptogena 
spp.) in sediments with high-to-moderate fluxes. Right: solemyid 
clams (e.g., Acharax spp.) in sediments with low flux.
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As discussed earlier in this report, methane in the atmos-
phere is a potent greenhouse gas. Methane’s radiative forcing 
value, a measure of how it changes Earth’s balance between 
incoming and lost solar energy, is about 0.5 watts per square 
metre, second only to the 1.66 watts per square metre of car-
bon dioxide (IPCC 2007).

The atmosphere contains about 3.7 Gt of methane carbon 
(IPCC 2007). This value is reasonably constant because of 
a delicate balance between atmospheric methane input and 
removal rates, both in the range of 0.45 Gt of methane car-
bon per year (IPCC 2007). Taking the midrange estimate 
of 5 000 Gt of carbon held as methane sequestered in gas 
hydrates (see Volume 1 Chapter 1), an instantaneous release 
of just a tenth of a per cent of Earth’s gas hydrates to the 

atmosphere would more than double the IPCC’s estimated 
atmospheric methane concentration.

Methane’s greenhouse potency, combined with the amount 
of methane stored in gas hydrates, has led researchers to sug-
gest methane released from dissociating gas hydrates played 
a significant role in past climate changes, and could be an 
important factor in future climate change. This chapter pre-
sents an example of how gas hydrates have been connected to 
past climate change and discusses key factors in establishing 
the role of gas hydrates in future climate change. Future cli-
mate change scenarios and the possible response of marine 
and permafrost gas hydrate deposits are then considered. 
The chapter concludes with a summarized assessment of the 
deposits that are most susceptible to change.

3.1 INTRODUCTION
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An extreme global warming event in the geological record be-
gan at the Paleocene-Eocene Boundary, about 56 million years 
ago (Dunkley-Jones et al. 2010; McInerney and Wing 2011). 
During this event, now called the Palaeocene-Eocene thermal 
maximum (PETM), global surface temperatures, including in 
the deep-sea, rose by 5 to 6 ºC over a 1 to 10 thousand year period 
(Dunkley-Jones et al. 2010). Potential global-scale triggers for a 
temperature rise include a change in ocean circulation patterns 
(Lunt et al. 2010), or a change in snow, ice and vegetation cover-
age that altered the amount of sunlight absorbed by the Earth 
(Adams et al. 1999). Triggers for warming at a local or regional 
scale might include cometary impact (Kent et al. 2003) or large-
scale magma eruptions (Storey et al. 2007; Cohen et al. 2007).

Triggering mechanisms themselves may not be capable of 
generating the full global-scale temperature increase, how-
ever, so many researchers invoke a process proposed by Dick-
ens et al. (1995) in which the warming trigger destabilizes a 
significant volume of gas hydrate. This link to gas hydrate dis-
sociation is suggested by the numerous stable isotope records 
across Earth indicating the PETM warming coincided with at 
least 2 000 Gt of isotopically light (13C-depleted) carbon to the 
ocean and atmosphere (Zeebe et al. 2009; Cui et al. 2011), as 
well as oxygen depletion in the oceans and widespread carbon-
ate dissolution on the sea floor (Dickens et al. 1997). Isotopi-
cally light carbon can be an indication of biogenic methane 
that has been released from dissociating hydrate. Moreover, as 
discussed in Volume 1, Chapter 2, methane released into the 
ocean can be oxidized to CO2, a process that consumes oxygen 
and can also cause carbonate dissolution by making the water 
more acidic (see Volume 1 Chapter 2, Text Box 2.1). 

Irrespective of the fate of methane, atmospheric carbon 
concentrations would increase over relatively short-time 
scales, and contribute to the dramatic PETM warming 
(e.g. Dickens et al. 1997; Zeebe et al. 2009). Gas hydrate’s 
role during the PETM continues to be debated, however, 
because there are several possible sources for massive and 
rapid carbon input to the ocean and atmosphere unrelated 
to gas hydrates. Other suggested carbon sources during the 
PETM include: oxidation or burning of peat (Kurtz et al. 
2003), impact of a carbonaceous comet (Kent et al. 2003), 
intrusion of volcanic sills into organic-rich sediment (Sven-
sen et al. 2004), or carbon dioxide and methane release 
from degrading permafrost (DeConto et al. 2010). 

For the PETM and other past warming events, a few exam-
ples being the Permian-Triassic boundary (Krull and Retal-
lack, 2000), in the early Toarcian (Hesselbo et al. 2000; 
Cohen et al. 2007), in the Cretaceous (Jenkyns and Wil-
son, 1999), and in the Quaternary (Hill et al. 2006), one 
general conclusion is that if methane hydrate dissociation 
was important, it exacerbated, but did not initially trigger, 
rapid global warming (Dickens et al. 1995; Dickens 2003; 
Zachos et al. 2005; Sluijs et al. 2007; Dunkley-Jones et al. 
2010; Maslin et al. 2010). Another important conclusion is 
that a large fraction of the methane released from the sea 
floor may be oxidized in the water column, such that a pri-
mary consequence of hydrate dissociation is ocean acidifi-
cation and loss of dissolved oxygen (Dickens 2003). These 
past-climate studies help guide our expectations for what 
role gas hydrates might play in the future, given current 
climate trends.

3.2 THE ROLE OF GAS HYDRATE
IN PAST CLIMATE CHANGE
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Establishing the importance of methane from gas hydrates 
in ongoing and future climate change remains a challenge. 
Part of the challenge is the considerable uncertainty about 
the total amount of methane involved, as well as the timing 
and nature of gas hydrates’ response to future change (Kerr 
2010). To establish quantifiable connections between gas hy-
drates, ongoing climate change, and future climate change, 
four main questions must be answered:

How much warming will there be, and where? Surface tem-
perature changes must be linked to global processes, such as 
fluctuations in ocean circulation, sea level, and glacier mass 
balance, in order to provide information about temperature 
changes at the sea floor or in coastal permafrost regions. Pre-
dictive models of heat transfer through sediment can then be 
applied to forecast the temperature evolution for the buried 
gas hydrates themselves.

How much gas hydrate breakdown will result from that 
warming? Answering this question requires knowing the 

spatial distribution and concentration of gas hydrates in rela-
tion to regions of enhanced warming, as well as verifying the 
depth of hydrate occurrence in these locations to determine 
whether a given surface temperature change will cause any 
or all of the buried gas hydrates to break down.

How long will the warming take to destabilize those gas hy-
drates? Heat transfer down through sediment can be slow. 
The process is further slowed by the heat absorbed in thaw-
ing overlying permafrost or dissociating gas hydrates them-
selves. There can be delays of 3 000 years or more between 
ground-surface or sea-floor warming and the ensuing gas 
hydrate dissociation at depth (Ruppel 2011).

How much of the methane released from the destabilized gas 
hydrates will be transferred to the atmosphere? To increase at-
mospheric methane concentrations, methane liberated from 
gas hydrates must migrate through the sediment and/or water 
column without being consumed or dissolved. Consumption 
rates are not well-constrained and vary by location.

3.3 KEY ISSUES FOR LINKING
GAS HYDRATE WITH CLIMATE CHANGE
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Annual temperature increases for  2001-2005 
relative to 1951-1980

Average surface temperature anomaly (ºC)
-0.8 -0.4 -0.2 0.2 0.4 0.8 1.2 1.6 2.1 Source : Hansen, J., et al. 

Global Temperature Changes, 
Prot. Natl. Acad. Sci. 103, 2006.

Future trends in global climate change have been subjected 
to intense scientific investigation, with major efforts being 
mounted by the Intergovernmental Panel on Climate Change 
(IPCC). Their fourth assessment report, published in 2007, 

documents the growing impact of human activities on global 
climate and reviews the challenges of undertaking forward 
predictions (IPCC 2007).

3.4 GLOBAL CLIMATE CHANGE
PROJECTIONS

Figure 3.1: Sea-surface and land-surface temperature changes. Change in ocean sea-surface temperature and temperature over land from 
2001 to 2005, relative to the 1951-1980 mean (Hansen et al. 2006). The Arctic is experiencing some of the Earth’s most significant warming. 
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Figure 3.2: Predicted increase in global mean surface-air 
temperatures. Increases are relative to 1980–1999 for different 
emission scenarios (IPCC 2007). The partial pressure of carbon 
dioxide in the atmosphere (pCO2) is assumed to attain a value of 
800 to 1 000 parts per million (ppm) at the end of this century 
for scenario A2. It increases to about 700 ppm in scenario A1B 
and reaches approximately 500 ppm in scenario B1. The current 
pCO2 value of about 390 ppm is maintained until the end of the 
century in the constant composition scenario. (See IPCC (2007) 
for further information.)

Figure 3.3: Arctic surface air-temperature change. Change is 
measured relative to measurements from 1901 to 1950 (black curve). 
Orange region is the 2001-2100 prediction given the A1B scenario 
(pCO2 increase to 700 ppm by 2100). Bars to the right indicate 
the predictions for 2091–2100 for the scenarios B1 (blue bar, pCO2 
increases to 500 ppm by 2100), A1B (orange bar, pCO2 increases to 
700 ppm by 2100), and A2 (red bar, pCO2 increases to 800–1 000 
ppm by 2100) (IPCC 2007).

According to the IPCC assessments, surface temperatures 
rose significantly over the last century, with the strongest 
warming signal in the Arctic (Fig. 3.1).

Future trends in climate change have been estimated by the 
IPCC for different greenhouse gas emission scenarios (Fig. 
3.2). Predictions of global surface-air-temperature increases 
over the next century range from 1.5 to >3 °C. As observed 
in the historical data, the most substantial warming is an-
ticipated at high northern latitudes (Fig. 3.3) where surface 

air temperatures may increase by up to 8 °C by the end of 
this century. 

Methane release from dissociating gas hydrates is not in-
cluded in the IPCC climate predictions, in part because the 
magnitude and timing of the induced emissions are poorly 
constrained and therefore difficult to forecast. Gas hydrate 
dissociation might nevertheless amplify future warming, 
ocean acidification, and oxygen loss, as discussed in Vol-
ume 1, Chapter 2.
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Figure 3.4: Future change in bottom-water temperatures at the 
sea floor. Changes are given in °C per 100 years as predicted 
by the Kiel Climate Model (KCM) (Park et al. 2009), for a pCO2 
increase scenario (1 per cent increase until current-day values 
are doubled). Values are an ensemble average of eight individual 
model realizations starting at different initial states.
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3.5.1 OCEANIC RESPONSE TO CLIMATE 
CHANGE

Marine gas-hydrate deposits occur in sediments under 300-500 
metres or more of water and at a significant depth beneath the 
sea floor. As a result, the most important climate change con-
sideration for hydrate dissociation is the possible warming of 
bottom waters. Heat conduction is the primary heat transfer 
process from the atmosphere into the ground in terrestrial set-
tings, but a number of processes can transport heat from the sea 
surface into the ocean’s interior. These include vertical mixing, 
convection of water masses and changes in ocean circulation. 

First-order predicted trends in bottom-water temperatures over 
the next 100 years are shown in Figure 3.4. Bottom-water tem-
peratures could increase by up to 2 °C in shallow water along 
continental margins by the end of this century, but significantly 
smaller temperature changes are predicted for deep-sea set-
tings. However, new result show that even during cold stadials, 
persistent intermediate water warming existed (Ezat et al., 2014) 
making future scenarios more difficult to predict. Gas hydrates 
occurring at shallow burial depths or as outcrops around the 
continental margins could experience significant warming over 
the coming decades and centuries. The largest bottom-water 
warming is predicted for the Arctic Ocean, where large areas 
of sea floor are affected by changes in the relatively warm Atlan-
tic waters flowing into the European Nordic seas and the Arctic 
Ocean (Biastoch et al. 2011). In some Arctic locations, shallow 
bottom waters may warm by up to 5 °C by 2100 (Fig. 3.5). 

The increase in bottom-water temperatures is slowed by the high 
heat capacity of seawater and by slow communication between 
surface waters and the deep ocean. Atmospheric temperature in-
creases will however, over the coming centuries and millennia, 
raise bottom-water temperatures. The long-term effect of global 
warming on sea-floor temperatures has been evaluated by Fyke 

and Weaver (2006). According to their model, the bottom-water 
temperature at continental margins will eventually increase by 
about 4 °C, and as reported by Ruppel (2011), approximately 3.5 
per cent of world’s gas hydrate could be dissociated over the next 
century due to bottom-water warming (see Section 3.6). 

In addition to changes in ocean temperature, the global sea 
level will rise in response to global warming. Sea level rise in-

3.5 RESPONSE OF GAS HYDRATES
TO CLIMATE CHANGE



FROZEN HEAT58

Figure 3.5: Current values and future changes in Arctic bottom-water temperatures. Left: Map of the modern bottom-water temperatures in 
an ocean model at 1/2° resolution (1985-2004). Right: Trend in bottom-water warming under elevated pCO2 as predicted by the Kiel Climate 
Model (KCM) (in °C per 100 years). The contour line depicts the 400-metre water-depth contour (From Biastoch et al. (2011)).
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duces a pressure increase at the sea floor and may help to sta-
bilize marine gas hydrates. However, IPCC projections of eu-
static sea-level rise are generally less than two metres by 2100 
and not expected to significantly enhance the stability of gas 
hydrates, which are more sensitive to temperature than pres-
sure (Ruppel 2000, 2011; Reagan and Moridis 2008). For 
example, modelling by Tishchenko et al. (2005) shows how 
the complete breakdown of the Greenland ice sheet, and the 

seven-metre sea level rise it would cause, would only protect 
gas hydrates from a ~0.2 °C temperature increase. In fact, as 
discussed in Section 3.5.4, sea level rise might actually have 
accelerated gas hydrate dissociation along Arctic shelves by 
submerging and warming the sediment. Other changes in 
the ocean regime, such as sea-ice cover in the Arctic, wave 
and current regime, or hydrology, are also not expected to 
have a great influence on gas hydrate stability. 
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3.5.2 RESPONSE OF MARINE GAS 
HYDRATES TO SEA-FLOOR WARMING

In deep waters, the upper sediment layers remain within the 
gas hydrate stability zone upon bottom water warming (Fig. 
3.6, left panel). Heat penetrating into the sediment from above 
may induce gas hydrate dissociation at the base of the GHSZ, 
where gas hydrates are most sensitive to change. However, 
heat is transferred slowly into marine sediments via conduc-
tion through the sediment and pore-water matrix, because 
bottom waters cannot penetrate into the sea floor. As such, 
hydrate dissociation along much of the middle to lower conti-

nental slope can only occur after a prolonged warming period 
of several thousand years (Xu et al. 2001). Moreover, the liber-
ated methane would have a tendency to migrate upwards to 
shallow sediment, where colder temperatures should induce 
gas hydrate formation. Depending on the magnitude of warm-
ing and time, considerable amounts of methane would remain 
trapped within sediments with a rise in bottom water tem-
perature (Dickens, 2001). Thus, as reported by a number of 
authors, fluxes of methane from gas hydrate regions in deep-
water settings are likely quite negligible to warming of bottom 
waters over the coming centuries (Reagan and Moridis 2007; 
Garg et al. 2008; Reagan and Moridis 2008; Ruppel 2011).

Figure 3.6: Penetration of heat into marine sediments. The left panel shows the increase in temperature with depth for sediments, 
located at 1 000 metres water depth, that are exposed to linear bottom-water warming of 1 °C per 1 000 years. Only the deepest gas 
hydrates dissociate, and only after a significant time delay. Methane released in this fashion is likely to migrate to slightly shallower 
depths and reform gas hydrate. The right panel depicts the response of permafrost-free Arctic upper-slope sediments at 320 metres 
water depth to a linear increase in bottom-water temperature of 3 °C per 100 years. In contrast to the deep marine setting, gas hydrates 
in shallow settings can be destabilized more rapidly, and dissociation occurs at the upper hydrate surface, facilitating the methane 
transport away from the hydrate. Temperature profiles were calculated by applying a thermal conductivity of 1.2 W m–1 K–1 and a 
volumetric thermal capacity of 5.1 J cm–3 K–1. The initial geothermal gradient was implemented as 40 °C km–1. The phase boundary 
(dotted line) is calculated for methane-gas hydrates in sulphate-depleted pore water with salt content of 35 g per kg of pore water 
(Tishchenko et al. 2005). Methane-gas hydrate is only stable when ambient sediment temperatures are lower than the temperature 
defined by the phase boundary. Gas hydrates dissociate when ambient temperatures exceed the phase boundary value. Heat absorbed 
during gas hydrate dissociation is not considered here.
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A very different scenario is possible in the shallower settings 
typical of the upper continental slope. Here, even modest 
warming can destabilize gas hydrates (Fig. 3.6, right panel). 
Hydrate dissociation would start at the top of the deposit, and 
the entire gas hydrate inventory in this setting could theo-
retically be transformed into water and methane. If the meth-
ane release rates were high enough, methane could escape 
the sediment’s methane biofilter and be released into the 
water column (See also Volume 1, Chapter 2). Gas hydrate 
outcroppings at the upper-slope sea floor might react instan-
taneously to sea-floor warming, while gas hydrates situated 
at greater water and sediment depth would dissociate only 
after a prolonged heating period of one hundred to several 
hundred years (Reagan and Moridis 2007; Garg et al. 2008; 
Reagan and Moridis 2008; Ruppel 2011).

The effect on gas hydrate stability of the predicted warming 
of the Arctic sea floor was estimated by Biastoch et al. (2011). 
According to their model, the GHSZ thickness will be signifi-
cantly reduced at several continental-slope areas due to global 
warming (Figs. 3.5 and 3.7). The authors proposed that about 
1014 Gt of methane carbon might be released from dissociating 
gas hydrates deposited in Arctic slopes at greater than 60 °N 
over the next 100 years, considering the slow penetration of 
heat into the sediments (Fig. 3.6, right panel). Their gas hy-
drate concentration estimates are based on the work of Klauda 
and Sandler (2005), which are at the high end of the published 
estimates. If released completely to the atmosphere, even this 
upper-estimate methane release would be too small to signifi-
cantly enhance global warming in a 100-year time span. None-
theless, this quantity of methane has the ability to enhance 
ocean acidification and oxygen depletion along the continental 
slope (see Volume 1 Chapter 2, Text Box 2.1). It should also 
be noted that the estimated amount of methane likely to be 
released remains uncertain, since the methane release rate de-
pends on the largely unconstrained distribution and inventory 
of methane gas hydrates in shallow Arctic slope sediments. 

3.5.3 FIELD EVIDENCE FOR ONGOING 
MARINE GAS-HYDRATE DISSOCIATION

Methane release as free-gas venting at the sediment-water 
interface is observed in many deep-water environments 
around the world. Some of these active gas seeps are from 

environments where pressure and temperature settings are 
conducive to gas hydrate formation (Ginsburg et al. 1993; 
MacDonald et al. 1994; Suess et al. 1999; Van Dover et al. 
2003; Tomaru et al. 2007). In many cases, it appears this 
phenomenon is not related to gas hydrate dissociation, but 
is the result of complex porous-media processes that allow 
some free gas to pass through the gas hydrate stability zone 
without forming gas hydrates (Liu and Flemings 2006). Po-
tential links between climate change and sea floor methane 
release due to dissociating marine gas hydrates have been 
found along the shallow-water-limit of hydrate stability along 
the upper continental slope, however (Westbrook et al. 2009; 
Mienert et al. 2010; Berndt et al. 2014; see also Text Box 3.1). 
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Figure 3.7: Effect of arctic bottom-water warming on gas hydrate stability. Left: Changes in the thickness of the GHSZ caused by the 
bottom-water temperature increase depicted in Figure 3.5. Above left: Volumetric GHSZ thickness changes north of 60°N as a function of 
time, given in absolute numbers (left axis) and as percentage of the steady-state solution, neglecting the transient heat intrusion into the 
sediment (right axis). Above right: Phase diagram of methane-gas hydrates as a function of pressure and temperature (constant salinity of 
S = 35 p.s.u.). Orange symbols mark the current bottom-water temperatures along the European Nordic Sea (circles) and Russian slope 
along the Laptev and East Siberian Seas (squares), black symbols mark the predicted bottom-water temperatures in 100 years. Vertical bars 
indicate the vertical resolution of the ocean model (From Biastoch et al. (2011)).
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3.5.4 RESPONSE OF PERMAFROST GAS 
HYDRATE TO CLIMATE WARMING

In the Arctic, where thick occurrences of permafrost are found 
at depth, temperature and pressure conditions in the subsurface 
create a significant interval where gas hydrates can be stabl e in 
and beneath the permafrost (Dallimore and Collett 1995). Per-
mafrost gas hydrates have been described in terrestrial areas 
where permafrost is more than 250 metres thick in Siberia, 
Arctic Canada, and northern Alaska. Permafrost gas hydrates 
are also likely to exist in shallow-shelf settings, associated with 
relict permafrost that formed while these areas were exposed as 
dry land by low sea levels during Pleistocene ice ages. 

As in permafrost-free sediments (Fig 3.6), heat must first 
diffuse down into the sediment before gas hydrates can 
be warmed and destabilized. The presence of permafrost 
slows this heat transfer (Fig. 3.8). Heat from the sediment 
surface is consumed over millennial time scales to warm 
and eventually thaw the permafrost (Lachenbruch and Mar-
shall 1986; Taylor et al. 1996a,b; Majorowicz et al. 2004; 
Taylor et al. 2006; Ruppel 2011). Forward modelling, with 
the effects of possible warming over the next century taken 
into consideration, shows only negligible changes in ter-
restrial Arctic gas hydrate stability conditions (Taylor et al. 
2006; Ruppel 2011).
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Over 200 methane gas plumes have been observed coming 
from the seabed offshore West Svalbard (Fig. TB-3.1.1). There 
are plumes on the continental shelf in relatively shallow water 
near the shelf edge, on the continental slope in water shallower 
than the ~400 m water depth required for methane hydrates to 
be stable, and a few plumes have even been observed in deeper 
water (Westbrook et al. 2009; Sarkar et al. 2012; Rajan et al. 2012). 
From a climate-change perspective, it is of interest to know if 1) 
methane in the plumes reaches the atmosphere to directly increase 
atmospheric greenhouse gas levels, and 2) if recent climate change 
is responsible for creating the methane plumes. It does not appear 
methane in these plumes is reaching the atmosphere (Fisher et 
al. 2011), but there is ongoing debate about whether the plumes 
are caused by gas hydrates that are dissociating in response to 
bottom-water warming over the past ~30 years (Thatcher et al. 
2013; Sarkar et al. 2012; Rajan et al. 2012; Berndt et al. 2014).

Box 3.1 Methane bubble plumes from the sea floor off West Svalbard

Much of the methane feeding into this region appears to be 
migrating toward the sea floor from below the gas hydrate stability 
zone, further down the continental slope than where most of the 
methane flares are found (Hustoft et al. 2009, Thatcher et al. 2013; 
Sarkar et al. 2012; Rajan et al. 2012). As methane migrates upward 
through sediment, it can occasionally find flow conduits through 
which it can escape vertically through the gas hydrate stability zone 
(GHSZ) (Liu and Flemings 2006), but in this region that type of 
flare is quite rare (Sarkar et al. 2012).

More generally, methane either becomes incorporated into the gas 
hydrate or migrates up the continental slope through permeable 
sediment layers and conduits, some of which reach all the way to 
the shelf (Thatcher et al. 2013; Sarkar et al. 2012; Rajan et al. 2012) 
(Fig. TB-3.1.2). Of particular interest, however, are the plumes located 
just upslope from the current limit of gas hydrate stability (Fig. TB-

Figure TB-3.1.1: Methane-rich 
plumes in the water column on the 
West Svalbard continental margin. 
A: Location of survey area west of 
Svalbard; bathymetry (Jakobsson et 
al. 2008). B: Positions of acoustically 
imaged plumes are depicted 
by “pins” superimposed on a 
perspective view of the bathymetry of 
part of the area of plume occurrence. 
The 396-metre isobath contour is the 
expected landward limit of the GHSZ. 
C: Part of the record from an acoustic 
survey showing examples of observed 
plumes. All plumes show a deflection 
towards the north caused by the West 
Svalbard Current. The sea floor, at 
around 240-metre depth, is shown by 
the strong (red) response (adapted 
from Westbrook et al. 2009). 
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Sedimentary layers and gas migration pathways
for the continental margin and slope o�shore Svalbard
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Figure TB-3.1.2: Sedimentary layers and gas migration pathways for the continental margin and slope offshore Svalbard. In this conceptual 
model, gas cannot easily reach the sediment surface of the continental slope without being transformed to gas hydrates or diverted 
upslope by impermeable hydrate-bearing sediment or glacial debris flows. Instead, gas migrates up through faulted sediment and upslope 
through permeable layers before reaching the sediment surface in the gas-flare region near the top of the continental slope (adapted from 
Thatcher et al. 2013).

3.1.2, inset). It has been postulated that hydrate had been stable in 
shallower waters, but a 1°C bottom water temperature increase over 
the past ~30 years caused that hydrate to begin dissociating and 
emitting methane from the sea floor (Thatcher and Westbrook 2011; 
Sarkar et al. 2012). Marin-Moreno et al. (2013) have extended this 
idea to predict the regional methane release over the next 300 years. 
They use two different climate models to estimate the distribution of 
hydrates in the region, and assuming hydrate dissociation is driven 
by long-term temperature increases, they estimate anywhere from 
~1 – 25 TgC (0.001 – 0.025 GtC) could be released per year from the 
section of sea floor between 400 – 550 metres water depth along the 
Eurasian Margin over the next 300 years. Recent observations from 
the MASOX autonomous observatory, however, suggest the methane 
plumes may be thousands of years old, having already begun hosting 

biologic communities that have formed carbonate deposits. Rather 
than resulting from modern warming trends, the plumes may instead 
come from methane hydrates that form and dissociate in response 
to seasonal temperature changes of the bottom water (Berndt et al. 
2014). In spite of the many observed plumes, the methane released 
from the sea floor contribute a negligible amount of methane to the 
atmosphere (Fisher et al. 2011), but will instead likely contribute to 
acidification and oxygen depletion in the ocean.

This region remains an active study area as researchers continue 
to investigate the origins and fate of methane in this location. Our 
understanding of this system will evolve rapidly over the next few 
years as results are released from ongoing studies, as well as from 
several new research cruises.
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The situation is more complex on Arctic shelves, which were 
frozen as permafrost until being flooded during the sea-level 
rise that started 7 000 to 15 000 years ago (Shakhova et al. 
2010b). Flooding warmed the ground surface to above freez-
ing and began thawing the permafrost. An example of the geo-
thermal response of permafrost and the gas hydrate stability 
zone is illustrated in Figure 3.8 for sites on the Beaufort Shelf. 

The shift in mean annual sediment-surface temperatures 
from around –15 °C to near 0 °C, induced by the marine trans-
gression, is far more significant than current air-temperature 
increases, and the shelf warming has been going on for ap-
proximately 13 500 years. This marine transgression has an 
on-shore analogy: the emplacement of a thermokarst lake on 
a terrestrial landscape. As with the shelf transgression, a lake 
can more quickly transport heat to the depths of gas hydrate 
stability than could occur in terrestrial systems subjected only 
to atmospheric warming at the ground surface. 

Although sub-sea permafrost destabilizes on time scales of 5 
000 to 10 000 years (Shakhova et al. 2010a), the roughly 4 °C 
warming predicted for the Arctic (Fig. 3.5) has the potential 
to perturb or accelerate processes that have been going on 
for millennia. Without a permafrost cap, underlying meth-
ane – either from gas hydrates or other sources – can more 
easily escape through degrading permafrost to the sediment 
surface (Shakhova et al. 2010a; Brothers et al. 2012, Portnov 
et al. 2013). Moreover, as illustrated in Figure 3.8, gas hydrate 
dissociation in these flooded permafrost environments can 
occur at the top of the GHSZ, as in the upper-continental-
slope case (Section 3.5.2). Methane released at the top the 
GHSZ will not reform as gas hydrates while migrating to 
the sediment surface, increasing the likelihood of methane 
reaching the ocean/atmosphere system and contributing to 
climate warming. 

3.5.5 FIELD EVIDENCE FOR ONGOING 
DISSOCIATION OF PERMAFROST GAS 
HYDRATE

Direct evidence for the release of methane from dissociat-
ing gas hydrates associated with relict subsea permafrost or 
terrestrial permafrost is lacking, but Paull et al. (2007, 2011) 
have suggested that some features associated with gas release 
on the Beaufort shelf may be related to gas hydrate disso-
ciation initiated by marine transgression. Pingo-like features 
(PLFs) are one example. Based on shallow geologic studies, 
geothermal modelling, and the geochemistry of sediment 
pore waters/gases, it has been proposed that PLFs on the 
Canadian Beaufort Shelf may be formed by sediment, water, 
and gas movement from depth, resulting from permafrost 
gas hydrate dissociation, as shown in Figure 3.9.

Figure 3.8: Penetration of heat into permafrost-bearing sediment 
that has been flooded by sea water. Thawing permafrost acts as 
a thermal buffer, slowing the diffusion of heat into sediment. 
Once dissociated, however, gas released at the top of the hydrate 
stability zone can migrate through the sediment without re-
entering the gas hydrate stability zone. This case is similar to the 
shallow marine case illustrated in Figure 3.6. Gas liberated from 
dissociation at the base of gas hydrate stability will likely reform 
as gas hydrate as it migrates up through the gas hydrate stability 
zone (Figure courtesy of A. Taylor, Geological Survey of Canada).
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Figure 3.9: Evolution of a pingo-like feature (PLF). As the subsurface warms, the top of the gas hydrate stability zone moves downward 
(yellow arrows in the left panel). Warming results in gas hydrate dissociation in a gradually thickening zone (brown), releasing gaseous 
methane into the sediments (yellow bubbles). Bubble formation associated with this phase change creates overpressured conditions. The 
right-hand panel shows how material may flow (red arrows) both laterally and vertically in response to overpressure. Displaced sediments 
rise upward to form the PLF and allow the gas to vent. As the pressure is dissipated through both the transfer of solids and degassing, 
subsidence in the area immediately surrounding the PLF (black arrows) creates the moat. 

On the U.S. Beaufort shelf/slope area, recent measurements 
suggest there is no measurable difference in the surface wa-
ter’s methane content across the zone where methane hy-
drate may currently be dissociating, meaning that while the 
surface waters are methane rich, widespread gas bubbling in 
the water column that can be attributed to hydrate dissocia-
tion is not observed (Pohlman et al. 2012).

The Laptev Sea and the surrounding Siberian shelf areas are 
also quite rich in methane (Shakhova et al. 2010b) and bub-
ble plumes have been observed, but there are many methane 
sources in that system and it is not yet known the extent to 
which dissociating hydrates are contributing to the observed 
methane concentrations (Text Box 3.2). 
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In the East Siberian Arctic Shelf (ESAS, Fig. TB-3.2.1), methane 
concentrations in the surface waters exceed typical seawater 
values and far exceed the atmosphere’s equilibrium methane 
concentrations (Shakhova et al. 2010a). Shakhova et al. (2010b) 
suggest methane is released into the atmosphere at an annual 
rate of about 8 Tg of carbon (.008 GtC) for the ESAS alone, 

Box 3.2 Methane release along the East Siberian Arctic Shelf

comparable to the rate expected for the rest of Earth’s oceans 
combined. The present-day ESAS methane release rate is nearly 2 
per cent of the nearly 450 Tg of methane carbon (.45 GtC) annually 
released to the atmosphere from all sources globally (IPCC, 2007). A 
current research challenge is to predict whether methane release rates 
will increase significantly in response to ongoing climate change.
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Two key questions are:
•	What are the methane sources?
•	How effective are the methane sinks that consume methane 

before it reaches the atmosphere? 

Knowing the sources can reveal whether the system has been 
steadily releasing methane at these rates in response to long-term 
climate change and/or whether the methane release rates are likely 
to accelerate as the system responds to short-term warming.

One possible source is methane brought in by the six largest 
Eurasian rivers, although Shakhova et al. (2010a) suggest most 
of the riverine methane is oxidized in the rivers prior to reaching 
the ESAS. Given the geologic history of the ESAS, it is more likely 
that methane is coming out of the ESAS sediment (Fig. TB-3.2.2). 
The sediment drape on the ESAS is organic-rich (Vetrov and 
Romankevich 2004; Shakhova et al. 2010a). The upper layers were 
frozen as permafrost until increasing sea levels, starting 7 000 
to 15 000 years ago, flooded the region (Shakhova et al. 2010b) 
and raised the ground-surface temperature above freezing. The 
permafrost has been thawing ever since as heat and salt from 
overlying sea water penetrate deeper into the sediment. Shakhova 
et al. (2010a) summarize four methane sources in this thawing, 
organic-rich system: 

1. Methane can be produced via microbial breakdown of organic 
material in the shallow, modern ESAS sediment, which was 
never frozen.

2. As permafrost thaws, the newly unfrozen, older organic material 
also becomes available for microbes to consume, producing 
methane as a by-product of that consumption.

3. Gas hydrates, thought to exist across a significant portion of the 
ESAS (Soloviev 2002; Shakhova et al. 2010a), may be dissociating 
and releasing methane in response to heat transferred down 
from the sea floor.

4. Methane may be leaking up through the thinning or thawed 
permafrost from a deeper petroleum system.

The present-day methane release from ESAS sediments is 
thought to be occurring in response to long-term sediment 
warming resulting from seawater flooding the ESAS region 
(Shakhova et al. 2010a), rather than to recent atmospheric 
warming trends. However, it is not yet certain which sources 
contribute to the observed seawater-methane concentrations. 
Methane consumption efficiency, the combined removal of 
methane due to dissolution and to microbial processes in the 
soil and water column (see Volume 1 Chapter 2), is also not well-
constrained in the ESAS region. Quantifying methane sources 
and sinks remains a requirement for establishing the long-term 
climatic impact of methane released to the atmosphere.

Figure TB-3.2.2: Methane plumes in the East Siberian Arctic 
Shelf (ESAS). The extremely shallow ESAS environment allows 
gas-bubble plumes to reach the water surface, facilitating the 
transfer of methane from the sediment to the atmosphere (Image 
courtesy of I. Semiletov, unpublished data from cruise-2011). 
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How long a warming event takes to affect gas hydrate sta-
bility and whether methane released from gas hydrates is 
transported to the atmosphere depend, to a large extent, on 
where gas hydrates are located. Based on published distri-
bution estimates, Ruppel (2011) summarizes five general 
categories or “zones” of gas hydrate occurrence and the 
extent to which predicted climate change would result in 
the transport of methane from gas hydrates to the atmos-
phere (Figure 3.10). Following the work of Ruppel (2011), 
estimates of gas hydrate sensitivity to warming are given 
as percentages of the global gas hydrate store, assuming 
99 per cent of the world’s gas hydrates are located in deep-
water marine environments (zones 3-5 in Figure 3.10), and 
1 per cent are associated with permafrost, either on land or 
submerged in shallow Arctic shelf regions (zones 1 and 2 in 
Figure 3.10) (McIver 1981). The percentages given by Rup-
pel (2011) depend on whether future studies uphold the as-
sumed balance between marine and permafrost-associated 
gas hydrate volumes. For a sense of scale, even 1 per cent 
of the estimated global supply of methane in gas hydrates 
(5 000 GtC) is equivalent to 25 times the estimated global 
consumption of methane in 2020 (2.15 GtC), based on con-
sumption estimates from the (U.S. Energy Information Ad-
ministration, 2010). 

1: Terrestrial Arctic environments
Less than 1 per cent of the world’s gas hydrates are likely to 
exist in this environment (Zone 1 in Fig. 3.10). Because the 
presence of permafrost dramatically slows the transfer of 
heat to the depths at which gas hydrates exist, time scales in 
excess of 1 000 years are necessary for atmospheric warm-
ing to begin dissociating gas hydrates at the top of the gas 
hydrate stability zone (Ruppel 2011). On an extremely local-
ized scale, thermokarst lakes may provide a conduit for more 
rapid delivery of heat into the subsurface to dissociate gas 

hydrates. Gas-venting pockmark features beneath delta lakes 
and channels at the edge of the Mackenzie Delta have been 
attributed to gas hydrate dissociation (Bowen et al. 2008). As 
noted in Ruppel (2011), however, methane seeps in terrestrial 
Arctic environments may be carrying methane from deeper 
hydrocarbon reservoirs, rather than from gas hydrates break-
ing down due to warming. Identifying the methane source in 
this sector is an important research focus.

2: Flooded permafrost environments (<100 
metres water depth)
Given the assumption that 1 per cent of the world’s gas hy-
drates exist in polar regions, and much of that 1 per cent 
exists below terrestrial permafrost, Ruppel (2011) estimates 
less than 0.25 per cent of the global gas hydrate volume is 
found in flooded permafrost regions (Zone 2 in Fig. 3.10). 
Gas hydrates in Zone 2 are also buried beneath about 200 
metres of sediment, and it is not likely that human-activi-
ty-related warming trends are affecting them significantly. 
However, this sector has experienced significant warming, 
because coastal flooding that occurred about 13 500 years ago 
generated up to 17 °C of warming (Shakhova et al. 2010b) at 
the sediment surface. This warming continues to thaw and 
degrade both permafrost and underlying gas hydrates (Sem-
iletov et al. 2004). In these shallow environments, methane 
gas released from the sea floor can pass through the water 
column and enter the atmosphere (McGinnis et al. 2006). 
This sector is a likely location for gas hydrates to impact the 
atmospheric methane concentration over the next few hun-
dred years. However, identifying how much of the methane 
release is caused by anthropogenic warming of gas hydrates 
requires first distinguishing between methane produced by 
gas hydrate dissociation and methane from other sources, 
such as organic matter decay or migration from deeper 
methane sources.

3.6 REVIEW OF SENSITIVITY OF
GLOBAL GAS HYDRATE INVENTORY

TO CLIMATE CHANGE
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3: Upper continental slope environments 
(about 300-500 metres water depth)
Ruppel (2011) calculates that about 3.5 per cent of the world’s 
gas hydrates exist in this environment (Zone 3 in Fig. 3.10). 
At this feather-edge of stability, bottom-water warming could 
destabilize the entire thickness of gas hydrates in the shallow 
subsurface. Reagan and Moridis (2007) estimate gas hydrates 
in these shallow systems extending nearly 50 metres into the 
sediment could dissociate within 100 years. If gas hydrates 
have not already begun dissociating along the Arctic slope, 
the process could begin within the next century (Biastoch et al. 

2011, Marin-Moreno et al. 2013) and progress rapidly to lower 
latitudes (Reagan et al. 2011). However, as noted by Ruppel 
(2011), methane gas released from sediments at these water 
depths would likely be oxidized prior to reaching the atmos-
phere (see also Text Box 3.1 for a discussion of evidence of 
climate-related hydrate dissociation in this zone).

4: Deepwater marine environments (greater 
than 500 metres water depth)
These gas hydrate deposits (Zone 4 of Fig. 3.10) probably ac-
count for about 95 per cent of all gas hydrates on Earth. In spite 
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distinct zones, contains four potential methane sources. Methane is released from sediment along much of the cross-section, but over the 
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of their abundance, they would contribute little to no meth-
ane to the ocean, even over a 3 000-year period after impos-
ing a 1.25°C bottom-water temperature increase over present 
conditions (Ruppel 2011). A heat pulse entering the sediment 
would require millennia to reach the vulnerable gas hydrates 
at the base of the gas hydrate stability zone. In addition, the 
methane would likely remain trapped below the GHSZ or be 
converted back into gas hydrate as it migrated up through the 
sediment. An exception to this recycling model could occur 
if over pressuring associated with methane gas release gener-
ated highly permeable pathways that facilitated the transit of 
the gas through the overlying gas hydrate stability zone. Once 
released from the sea floor at these depths, methane would 
likely be consumed in the water column prior to reaching the 
atmosphere (McGinnis et al. 2006). However, as discussed in 
Chapter 2, bubbles released at these depths could form hydrate 
shells that would limit the rate at which methane in the bubble 
dissolved and allow methane to reach shallower depths.

5. Gas hydrate mounds on the sea floor
In the presence of seeps, gas hydrate mounds can occur in 
Zones 2 to 5 (see Fig. 3.10). Whether methane from mounds 
and seeps is being transferred to the atmosphere is a cur-
rent topic of debate (Solomon et al. 2009; Hu et al. 2012). 
The direct exposure of gas hydrate mounds to sea water 
means they are constantly dissolving, and their breakdown 
increases with increasing temperature. As with the upper-
continental-slope gas hydrates, methane released from 
mounds will be subject to dissolution and oxidation in the 
water column. If gas hydrate mounds break apart or dis-
lodge from the sediment surface, however, the gas hydrate 
can rise through the water column and allow methane to 
reach the mixed layer near the sea surface and enter the 
atmosphere (Brewer et al. 2002; Paull et al. 2003). As noted 
by Ruppel (2011), however, mounds represent only a trace 
fraction of the global gas hydrate reservoir. 
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Even in response to present-day warming rates, the vast ma-
jority of the world’s gas hydrates will not contribute methane 
to the atmosphere over the next century (Archer, 2007). The 
roughly 3.5 per cent of the world’s gas hydrates existing at the 
feather-edge of stability on the upper continental slope could 
break down over the next 100 years, but the released methane 
would likely be consumed in the sediment or water column 
before entering the atmosphere. Only the approximately 0.25 
per cent of the world’s gas hydrates located in flooded perma-
frost environments (Ruppel, 2011), which have been subjected 
to warming over the past 7 000 to 15 000 years, are likely to re-
lease, or are releasing, methane that can reach the atmosphere.

Because a significant increase in atmospheric methane con-
centrations can result from transferring even a very small 
fraction of the methane in gas hydrates to the atmosphere, 
quantifying the climatic impact of gas hydrate breakdown 
will require reducing substantial uncertainties in estimates 
of methane transfer to the atmosphere. Three key research 
goals are:
1. Constrain the gas hydrate volumes that currently exist in 

the most sensitive environments through in situ sampling, 
remote sensing and modelling;

2. Establish water-column methane-consumption rates to 
constrain estimates of how much methane from gas hy-

drates could transfer directly to the atmosphere. Since 
water-column methane oxidation consumes oxygen as well 
as methane, quantifying methane oxidation rates is also 
necessary for establishing the biologic repercussions of re-
duced oxygen levels in marine systems; and,

3. Identify or fingerprint methane entering the atmosphere 
from gas hydrates in order to distinguish gas hydrates 
from other active methane sources. The release rates and 
the volume scales of methane from the decomposition of 
organic material or from deeper hydrocarbon reservoirs 
can be quite different from the methane-release patterns 
associated with gas hydrates.

So far, contemporary anthropogenic climate change does 
not appear to have triggered significant gas hydrate disso-
ciation. However, the potential climate and environmental 
impact of even a limited dissociation of the world’s gas hy-
drates continues to fuel multidisciplinary research in this 
area (see Text Boxes 3.1 and 3.2). In addition to the climatic 
impact of methane release to the atmosphere, methane re-
lease can affect other aspects of the environment. Methane 
oxidation within the ocean contributes to ocean acidification 
and will also affect the budget of dissolved oxygen, carbon 
dioxide, and other compounds in the ocean (as discussed in 
Volume 1, Chapter 2).

3.7 CONCLUSIONS
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