Universal access to affordable, reliable and modern energy services

Malcolm Cosgrove Davies
Global Lead for Energy Access
World Bank Energy and Extractives

UN High Level Political Forum on Sustainable Development
Thursday July 21th, 2016
What does the energy access challenge involve?

Energy Access Redefined: adequate quantity, available when needed, good quality, reliable, convenient, affordable, legal, healthy and safe
Why do we care about energy access?

Access is a means to many ends

Access to energy is crucial for socio-economic development.

HOMES
- Energy for:
 - extending the day
 - reducing drudgery
 - telecommunications and entertainment
 - clean cooking

HOSPITALS
- Energy for:
 - safer births
 - vaccinations
 - better health outcomes

COMMUNITY SPACES

SCHOOLS
- Energy for:
 - making and distributing goods
 - economic activity
 - creating jobs

STREET LIGHTS

ARTISANS
- Energy for:
 - extending the day
 - reducing drudgery
 - telecommunications and entertainment
 - clean cooking
Why think beyond connections?

BEYOND CONNECTIONS MEANS:

- Off-grid solutions
- Quality and quantity of grid electricity
- Upstream electricity projects
- Clean cooking solutions
- Energy for community facilities and productive engagements

Energy access can no longer be understood in terms of number of grid electricity connections.
Measuring energy access: the multi-tiers

Improving attributes of energy supply leads to higher tiers of access.
PROGRESS TOWARD SUSTAINABLE ENERGY: GLOBAL TRACKING FRAMEWORK 2015
Shifting the energy access paradigm

Multiple technologies

Multiple socio-economic benefits

Multiple attributes of energy supply

Multiple locales of energy use

People with Energy Access
1.1 billion people live without any electricity

2.9 billion cook with health-damaging solid fuels

Another 1 billion are connected to the grid but have only intermittent service
SPATIAL DISTRIBUTION (TOP 5 COUNTRIES)

Top 5 countries with largest population without electricity access, millions of people, 2012

- Congo, DR
- Bangladesh
- Ethiopia
- Nigeria
- India

Top 5 countries with largest population without access to non-solid fuels, millions of people, 2012

- Pakistan
- Nigeria
- Bangladesh
- China
- India

Source: World Bank, Global Tracking Framework, 2015 (data from 2012).
Increased energy access leads to **economic growth, poverty reduction, and shared prosperity**

- 600 million people and 10 million SMEs have no access in Africa
- Energy growth is not keeping pace with GDP growth

Source: EU and World Bank Estimates
ECONOMIC IMPACT OF SHORTFALL

Economic Cost of Power Outages as Share of GDP, 2005

Source: Briceño-Garmendia 2008 and authors’ calculations of own-generation costs based on Foster and Steinbuks 2008.
Note: GDP = gross domestic product.
At the United Nations Sustainable Development Summit on 25 September 2015, world leaders adopted the 2030 Agenda for Sustainable Development, which includes a set of 17 Sustainable Development Goals (SDGs) to end poverty, fight inequality and injustice, and tackle climate change by 2030.

SDG 7 Ensure access to affordable, reliable, sustainable and modern energy for all
THE UNIVERSAL ACCESS CHALLENGE IS ENORMOUS

- Only 14 years left to reach the universal access target
- 1.1 billion need electricity today = 1.9 billion by 2030 (= average 120 million annually)
HOW CAN WE SCALE UP?

A. Provide more resources
- Increase access lending as a share of energy lending (currently 5%)
- Integrate with non-access projects (e.g. more explicit links with G+T+D investments)
- Integrate with non-energy projects (e.g. urban/rural; agriculture)

B. Improve cost-effectiveness
- Scope to scale up lower-cost connections through densification and off-grid solutions
- Scope to reduce costs of grid extension through more appropriate designs
- Scope to be more active in slum electrification (high density + poverty = high impact)
- Make access an integral part of sector reform / sector dialogue
- Improve planning and implementation – e.g. support programmatic involvement

C. Leverage innovation
- Off-grid electrification – tremendous innovation in technology, markets, business models
- Possible to leverage impacts undreamed of 5 years ago
- Distributed generation – potential to combine grid-connected and off-grid renewable energy market
- Energy efficiency – can help drive access agenda
- Support productive uses/gender to increase impact
HOW CAN WE SCALE UP?

A. Provide more resources

- Increase access lending as a share of energy lending (currently 5%)
- Integrate with non-access projects (e.g. more explicit links with G+T+D investments)
- Integrate with non-energy projects (e.g. urban/rural; agriculture)
ENERGY EQUITY: INVESTMENT REQUIREMENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Current Annual $US bn</th>
<th>Required Annual $US bn</th>
<th>Scale-Up Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Access</td>
<td>9</td>
<td>45</td>
<td>500%</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>225</td>
<td>393 (615 WEO-450)</td>
<td>175%</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>244</td>
<td>320 (442 WEO-450)</td>
<td>131%</td>
</tr>
<tr>
<td>SE4All Total</td>
<td>478</td>
<td>758 – 1,102</td>
<td>158%</td>
</tr>
</tbody>
</table>
MOBILIZING PRIVATE CAPITAL TO ADDRESS CHALLENGE

56 World Bank Guarantee Operations have been approved to date spanning 45 countries

$4B IBRD/IDA Guarantee Commitments

$12.6B Private Financing

$31.2B Total Infrastructure Financing

*All guarantee operations, 1990-2015

✓ Optimizing the Use of the Bank’s “AAA” Balance Sheet to Leverage Private Capital
B. Improve cost-effectiveness

- Scope to scale up lower-cost connections through densification and off-grid solutions
- Scope to reduce costs of grid extension through more appropriate designs
- Scope to be more active in slum electrification (high density + poverty = high impact)
- Make access an integral part of sector reform / sector dialogue
- Improve planning and implementation – e.g. support programmatic involvement
Many countries have a population density that supports successful grid upgrade.

Vietnam - last mile grid electrification

- **Household electrification rate**

 - **1976**: 0%
 - **1985**: 20%
 - **1994**: 40%
 - **1996**: 60%
 - **1998**: 80%
 - **2000**: 100%
 - **2002**: 100%
 - **2004**: 100%
 - **2006**: 100%
 - **2008**: 100%
 - **2010**: 100%
 - **2013**: 100%

- **Number**

 - **2008**: 110,868
 - **2009**: 143,863
 - **2010**: 187,596
 - **2011**: 265,881
 - **2012**: 337,324
 - **2013**: 390,000
ENERGY EQUITY: GRID EXTENSION FOR THE POOREST

Slum populations
- Nearly one billion people live in slums; UN Habitat forecasts 1.5 billion by 2020 and 2 billion by 2030
- Slum dwellers often show as electrified in household surveys, but many connections are illegal and unsafe
- Current potential: 300-500 million households.

Unelectrified in electrified areas
- Over half of the unelectrified in South Asia and about a third in SSA live in electrified areas. These are an “easy” target for densification

Reduce grid extension costs
- US distribution networks built at fraction of costs of African grids (NRECA)
- Better planning, appropriate technical standards and procurement processes can cut the costs by at least half

<table>
<thead>
<tr>
<th>Country</th>
<th>Densification potential (mn)</th>
<th>% of unelectrified</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>214.2</td>
<td>68%</td>
</tr>
<tr>
<td>Tanzania</td>
<td>7.9</td>
<td>22%</td>
</tr>
<tr>
<td>Ghana</td>
<td>5.4</td>
<td>54%</td>
</tr>
<tr>
<td>Kenya</td>
<td>20.9</td>
<td>61%</td>
</tr>
<tr>
<td>Nigeria</td>
<td>62.5</td>
<td>82%</td>
</tr>
</tbody>
</table>

WB estimates based on available data
HOW CAN WE SCALE UP?

C. Leverage innovation

- Off-grid electrification – tremendous innovation in technology, markets, business models
- Possible to leverage impacts undreamed of 5 years ago
- Distributed generation – potential to combine grid-connected and off-grid renewable energy market
- Energy efficiency – can help drive access agenda
- Support productive uses/gender to increase impact,
TECHNOLOGY ADVANCES ARE HELPING ACCELERATE ACCESS

<table>
<thead>
<tr>
<th>System sizes</th>
<th>Able to power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Wp</td>
<td>2 LED lights + a 14” flat-screen color TV</td>
<td>Under US$ 200</td>
</tr>
<tr>
<td>50 Wp</td>
<td>4 LED lights + a 14” flat-screen color TV + a fan</td>
<td>Under US$ 400</td>
</tr>
</tbody>
</table>

Soon to be available (with the state of the art energy efficient appliances)

| 40 Wp | 2 LED lights + a 21” flat-screen TV + a fan + a mobile phone charger + a radio | Under US$ 250 |

10 years ago = one light

Today = two lights, TV, radio fan, cell phone charging
CHANGE INTERVENTION MIX: BALANCE QUICK WINS WITH HIGH IMPACT

Electrification potential
(size of the bubble = million people)

- Grid ext.
- Grid dens.– supply constraints
- Grid dens. – demand
- Slums
 Half billion more by 2020
- Offgrid

More costly

More difficult / takes time

- Potential to increase impact and lower costs
 - Increase support to grid densification and slum electrification
 - Reduce costs of grid extension through appropriate designs
 - Leverage cost reductions and innovations in the off-grid space
CLIMBING THE ENERGY LADDER

- Not only falling costs and efficiency improvements:
- Pay as you go, mobile payments, smart micro-grids are transforming business models
- Gradual move from sales model to service provision
- Overlapping technologies and business models to choose from

- Device sales (mostly lanterns)
- PAYG Rent to own… (Lanterns/SHS)
- SHS fee for service
- Village micro-grids
- Larger grid-quality mini-grids
- Grid

- Lanterns often the first step in energy service chain
- Higher tiers limited by affordability
- Service approach improves affordability (no high upfront payment) and helps people to reach higher tiers
THE CLEAN COOKING SOLUTIONS PYRAMID

URBAN

• Induction cookstoves (electricity)
• LPG /Natural Gas for cooking
• Advanced-combustion cookstoves
• Pockets using efficient cookstoves

PERI-URBAN AREAS

• Some early adopters of induction cookstoves
• Introduction of LPG, Natural Gas, for cooking
• Introduction of Advanced – combustion cookstoves
• Efficient cookstoves

RURAL AREAS

• Pockets of LPG for cooking
• Pockets of Biogas for cooking
• Introduction of Advanced combustion cookstoves
• Promotion of mostly efficient cookstoves
Thank you