CLIMATE FORECASTING FOR SMALL ISLAND NATIONS

Managing Risks, Maximizing Opportunities
Introduction from the Secretary General of the World Meteorological Organization

Small Island Developing States (SIDS) are often affected by weather extremes and climate change, including the increased severity of cyclones, storm surges, heavy rains, droughts, sea-level rise and ocean acidification. Investments in disaster risk reduction, including early warning systems and adaptation measures for critical sectors, are therefore critical for building resilient communities and facilitating sustainable development.

SIDS have demonstrated leadership in calling for action to reduce global greenhouse gas emissions while adapting to weather and climate extremes. They can also lead the way in applying weather and climate services to support vital economic sectors and vulnerable communities. This brochure shows how some of the world’s smallest island nations are now using new climate forecasting tools to boost their economies and enhance livelihoods in areas as diverse as renewable energy, agriculture and national economic planning. In these pages you will read about key champions of climate forecasting services such as the President of the Seychelles and the Prime Minister of Samoa, who have been quick to realize the clear value of investing in climate forecasting services both to manage risks and to maximise economic opportunities posed by a changing climate.

This brochure also provides an opportunity to celebrate the great progress made by organizations such as the Caribbean Institute for Meteorology and Hydrology (CIMH). They are becoming global leaders in the use of Climate Outlook Forums (COFs) to actively assist key decision-makers from sectors such as agriculture, water and energy in understanding the implications of seasonal forecasts for the coming three to four months. As just one example, COFs provided the spark for the Caribbean nation of Jamaica to use an innovative approach to climate forecasting to manage the threats posed by coffee leaf rust disease while also finding clever ways to boost production.

The World Meteorological Organization (WMO) supports SIDS through its Programme for Least Developed Countries. It also pursues more targeted actions such as capacity building to enhance and strengthen the capacities of SIDS National Meteorological and Hydrological Services (NMHSs) and the development and application of science-based climate information and services in support of decision making. WMO is now working with its partners to support increased investments in climate forecasting services by all Small Island Developing States (SIDS) in the Pacific, Caribbean and Indian Ocean regions.

Around the globe, over 50 small island nations share similar challenges in responding to the impacts of climate change as well as similar challenges in cost-effectively implementing climate services because of their limited human, operational and financial resources. WMO is also a lead partner in the implementation of the Global Framework for Climate Services (GFCS), which provides a worldwide mechanism for coordinated actions to enhance the quality, quantity and application of climate services. The GFCS has been specifically working to empower SIDS to make more informed decisions on climate sensitive sectors through greater capacity development and direct technical support. It has also been working to enable greater sharing and collaboration by all small island nations and communities that share similar challenges, hopes and aspirations for sustainable development and improved livelihoods.

I invite you to read the entertaining and innovative case studies in this brochure and reflect on the fact that, despite their remoteness and limited resources, many of these small island developing nations are now leading the world in their application of climate forecasting services to strengthen their economies and develop a brighter, more hopeful future for their communities.

Petteri Taalas
Secretary-General of the World Meteorological Organization (WMO)
Simon Mason, a senior climate scientist from the International Research Institute for Climate and Society at Columbia University, says there is a good reason why the Caribbean is leading the world in climate forecasting.

“The Caribbean makes a lot of money out of its climate. Whether it’s tourism, agriculture or energy. Because the islands are so small, the region is also very sensitive to water shortages,” he says.

Mr Mason says that one of the most innovative products the Caribbean now produces is a seasonal drought outlook that combines a prediction for the next few months together with information on very recent rainfall patterns. According to him, the simple act of combining these two pieces of information can provide a much clearer indication of the likelihood of water shortages will occur.

Mr Mason is well-positioned to comment on the current leadership provided by the Caribbean region. He wrote the software program that now makes it easier for climate scientists to make accurate seasonal forecasts up to three months into the future. He says the accuracy of longer range forecasts is based on new abilities to measure differences between the temperature of the atmosphere and the temperature of the ocean, which changes much more slowly.

“The Caribbean makes a lot of money out of its climate. Whether it’s tourism, agriculture or energy.”

Simon Mason, Climate Scientist, International Research Institute for Climate and Society, Colombia University
"The ocean is critical for climate forecasting and the reason why we can predict the next few months is largely because of our knowledge of unusual conditions in the oceans. When we are forecasting the weather for the next few days, ultimately all we're doing is asking: 'What's the weather like now and how is it likely to change?' And that works out to a few days, but once you get out to about a week, any information that we have about what the weather's like now essentially becomes useless," he says.

Mr Mason says the secret to making accurate predications up to three months into the future is based on understanding when surface of the ocean is unusually hot or unusually cold.

"Of course, if we're looking far into the future, we are not going to get it right all the time. So into the future, we are not going to three months into the future making accurate predications up to three months into the future, we are not going to make sensible decisions about what to do and how much to invest," he says.

The Caribbean Institute for Meteorology and Hydrology (CIMH) is the regional climate services provider. Based in Barbados, the CIMH hosts the Caribbean Regional Climate Centre (RCC) and manages the bi-annual Caribbean Climate Outlook Forum, or CariCOF. A Climate Outlook Forum (COF) is a national or regional meeting in which climate scientists typically present a seasonal forecast for the coming three to four months to key decision-makers in sectors such as agriculture, water, disaster risk management, energy and health. These COFs are designed to strengthen the interaction between regional institutions, National Meteorological and Hydrological Services and the end-users of climate information.

Elizabeth Johnson is the representative of the Inter-American Institute for Cooperation on Agriculture (IICA), based in Jamaica. She believes the main benefit of the CariCOF is that it allows climate scientists the opportunity to sit around the table with representatives from sectors such as water, energy, agriculture, and tourism to exchange ideas and look at climate-related problems in a different way.

"I think it would be beneficial as well to have sectors from all the ministries of national planning take part in this forum because, once they come and they see the potential of the information and see how it impacts all of the sectors, I think they will be able to see how they can use it in planning for the countries involved," she says.

The CariCOF now typically occurs at the end of May, which marks the beginning of the wet/hurricane season, and then at the end of November for the dry season. For Mr Mason the benefits of the CariCOF are obvious.

"If we have a hurricane coming, the more advanced the warning, the more prepared we can be. The same is going to be true of climate events as well. If we're anticipating a drought coming the sooner we can have an early warning of that, the longer time we have to prepare and the more effective we can be at mitigating those impacts," he says.

This work has also led to Mr Mason spending considerable time collaborating with leading climate scientists from the Caribbean region. Scientists who, he says, are very keen to demonstrate that the region can be one of the leading centres in the world for providing climate information. But while climate scientists are getting much better at the science of forecasting, Mr Mason believes the progress in demonstrating that the region can be fairly confident that the rains will be fairly confident that the rains will be very favourable this year, they can be confident in putting more investment into buying extra fertilizer or planting a larger percentage of their land. So, while we need to manage the risks, it is also very important that we look for opportunities to take advantage of favourable climate conditions as well," he says.
Mr. Kolli is the Chief of the World Climate Applications and Services Division at the World Meteorological Organization. One of his main roles is to help WMO member countries to strengthen their climate forecasting services and to promote their use across climate-sensitive sectors such as agriculture, energy and water management.

What are the main benefits of Climate Outlook Forums?

All climate forecasts have an inevitable element of uncertainty, and the COFs help the participating countries to understand these uncertainties and manage their climate risks in a more informed way. The main benefit is to help countries interpret the multiple sources of information on seasonal forecasts, develop a consensus-based regional climate outlook and ensure consistent regional input for country-level outlooks. The COFs also provide platforms for training national operational staff with a common purpose, networking, sharing of experiences, user interaction and expert guidance.

How much has the science of climate forecasting improved since you started your professional career as a climate forecaster?

When I started out as a climate forecaster in the early 1980s, seasonal forecasting was mostly based on empirical models and historical data. Now we have very sophisticated atmosphere-ocean models that are being increasingly used for climate forecasting by COFs. Seamless forecasting from weather to climate time-scales using dynamical models is now entering the operational domain.

What impact have these COFs had around the world?

The number of deaths from weather and climate extremes has drastically reduced over the past few decades. This is largely due to early action powered by reliable weather and climate forecasts, and the later includes early warnings provided by COFs. Many people now take these for granted, but the fact remains that the lead time provided by early warnings is crucial for large-scale interventions by governments and aid agencies.
Why does the WMO think it is important to try and improve the use of climate forecasting services in the SIDS regions?

SIDS are sitting ducks for many weather and climate hazards, such as tropical cyclones, storm surges, floods, heatwaves, droughts and strong winds. Most SIDS economies are small and narrowly focused and therefore vulnerable to a range of external shocks. The capacities of weather and climate services within the SIDS are also very small, so regional consolidation of climate forecasting capacities has become a necessity to ensure effective and reliable early warning and early action to cope with weather and climate extremes. Mainstreaming the use of science-based and actionable climate information in all climate-sensitive decisions is critical if we want to make SIDS truly climate-smart.

“Mainstreaming the use of science-based and actionable climate information in all climate-sensitive decisions is critical if we want to make SIDS truly climate-smart.”

Rupa Kumar Kolli, World Meteorological Organization.

Do you think climate forecasting services can also help to provide SIDS with opportunities for sustainable economic development?

Do you think climate forecasting services can also help to provide SIDS with opportunities for sustainable economic development? The Caribbean was a bit late in embracing the COF concept, but they quickly came on top of it through active and enthusiastic involvement of the member countries and a brilliant coordination effort by the Caribbean Institute of Meteorology & Hydrology. CIMH has some really talented and passionate scientists, who have been using innovative approaches to enhance the COF product portfolio, and it is clearly serving as a role model for COF operations around the world.

What are the main barriers that are stopping more SIDS from utilizing climate forecasting services to support national planning and sustainable development?

The main barriers are lack of awareness and appreciation of the socio-economic benefits of climate forecasting services, and also the absence of a suitable mandate in many countries to mainstream the use of authentic climate forecasts in decision-making. Of course, many island countries also have very small meteorology services so they are also faced with basic capacity issues. It is very important to address the capacity development needs in terms of human-resource, infrastructural, institutional as well as procedural capacities.

Another barrier is lack of effective communication strategies tailored to the capacities and contexts of the users in understanding and applying climate information.

What would be your greatest wish in terms of strengthening climate forecasting services in the SIDS regions?

My greatest wish is to see all stakeholders in climate-sensitive sectors routinely using climate information in all their decision-making, much the same way as the aviation sector uses weather briefings. A pilot is aware of the uncertainties associated with weather forecasts but is mandated to use and apply the available information and knowledge. I would urge all small island leaders to support the development of National Climate Outlook Forums (NCOFs) and National Climate Forums (NCFs) which can greatly help to support the use of climate forecasts and products across all the different climate sensitive sectors. In the future I hope these forums will become a regular feature of the climate service under the coordination of the National Meteorological and Hydrological Services of all Small Island Developing States.
President Michel also co-chairs the Global Island Partnership (GLISPA), which brings together world leaders to promote action on sustainable development in order to reduce the vulnerability of Small Island States (SIDS) to the impacts of climate change. The President firmly believes that investing in improved climate forecasting services could help his country to strengthen key economic sectors such as tourism, fisheries and the production of renewable energy.

President Michel was greatly heartened by the recent Paris Agreement on climate change, and he hopes it will lead to concrete measures that will help to protect his vulnerable nation from the impacts of a changing climate. However he now also believes that the increasing climate variability in the Seychelles has led to a growing realization of the economic need to invest in improved climate forecasting services.

"Improving our climate forecasting services will help us to make more informed decisions about water resource management so we can try and prevent the increased risk of seasonal drought from impacting on people’s health, food supplies and the wider economy,” he says.

President Michel says his government has now made a significant investment in strengthening the Seychelles Meteorological Service to support the production of better weather and climate information, including early warning services.

“If our National Meteorological Service can improve the way it uses climate forecasting tools to make better predictions, our meteorologists can ultimately work with users to provide forecasts that will help them to make better decisions,” he says.

The President also says the Seychelles is now working towards transforming its economy from one that relies on imported fossil fuels...
to one benefiting from clean and renewable sources of energy. A new wind farm at Port Victoria was opened in May 2014, and he says accurate climatic knowledge will be very useful in helping to determine the right locations to install more wind farms.

President Michel also believes that improved forecasts of prolonged drought or intense rainfall could help farmers make more informed decisions, boost crop and livestock insurance and increase investment in communal water systems. With all these potential management benefits in mind, the President believes there is now some urgency to try to mainstream climate forecasting services into decision-making for all climate sensitive sectors, such as water, energy, agriculture, transport, tourism and disaster management.

“Mainstreaming climate forecasting services into national policies and strategies will help to enhance our planning and decision-making processes.”

President James Michel, Republic of the Seychelles

“Mainstreaming climate forecasting services into national policies and strategies will help to enhance our planning and decision-making processes. This information can then ultimately be used to reduce climate-related losses and enhance benefits, including the protection of lives and property,” he says.

In 2015 the Seychelles funded its first national climate outlook forum and the President hopes these new forums will improve the way climate forecasting information shapes the entire national planning and decision-making process. In fact, President Michel believes that Small Island Developing States could soon become the global leaders in the use of these new forecasting services to reduce reliance on imported fossil fuel while increasing the use of renewable energy resources such as sunlight, wind and hydropower.

“If SIDS are successful in doing this with limited resources, then it sets the pace for bigger countries with much greater resources to follow suit. This has a positive bearing on the economy of SIDS as well as on the economy of the bigger nations. Greater savings which are made through efficient planning processes can then be invested in other important sectors of national economies. This will eventually translate into an even lower carbon footprint for SIDS, at which point they will become the real champions in global greenhouse gas emission reduction,” he says.

In May 2014, the Seychelles government launched the Port Victoria Wind Farm as the country’s first large-scale renewable energy project. The wind farm consists of eight wind turbines on two small islands off the coast of Mahe that produce nearly 7 gigawatt-hours of energy, providing power to more than 2,000 homes and saving the national economy USD 2 million every year. The development of the wind farm is a major step toward meeting the country’s target of producing 15 percent of its energy from renewable sources by 2030. The project was delivered by Masdar and financed through a grant of USD 28 million from the Abu Dhabi Fund for Development.
Coffee is Jamaica’s second most important agricultural crop after sugarcane, and the sector employs approximately 120,000 people. In 2012, the Jamaican Ministry of Agriculture and Fisheries estimated the country exported more than USD 13.8 million worth of coffee, mostly to Japan, which takes over 75% of the coffee produced in the Blue Mountains.

Gusland McCook from Jamaica’s Coffee Industry Board says Blue Mountain Coffee is now a key part of the country’s national identity. “People now make that linkage between Jamaica and Blue Mountain Coffee. So it’s a very important crop both as an agricultural item but also as a tourism product,” he says.

When the coffee leaf rust fungus first spread to Jamaica in 1986, growers tried to use chemicals to keep it in check. But experts now suspect that when coffee prices began to decline many growers tried to save money by cutting back on chemical sprays and fertilizer. This left many plants much more vulnerable to the fungus.

In December 2012 and September 2013, coffee leaf rust flared up again, and the Jamaica Coffee Industry board estimates that Blue Mountain farmers experienced losses of around USD 2 million. The economic damage was even greater for Central American countries, with estimated losses approaching USD 350 million.

Most of Jamaica’s coffee is produced by small-scale farmers and, at its peak in the 2003-2004 season, the Blue Mountain Coffee industry was producing 600,000 boxes of coffee which were earning the country USD 30 million in export revenues. Production is now down to 200,000 boxes and revenues of just USD 13 million. Developing an effective strategy for dealing with coffee leaf rust is viewed as a critical part of the Coffee Board’s long-term strategy to get production back to peak levels.
Coffee leaf rust tends to develop during extended periods of wet and humid conditions. Hurricanes can spread spores across different elevations, and extended drought periods can also weaken trees, making them more susceptible to the disease. The 2012 epidemic also raised concerns about increased climatic factors and the potential market impact caused by any increased use of chemicals, especially given that Japan has very strict regulations on chemical minimum-residue limits.

In 2013, the Caribbean Institute for Meteorology and Hydrology (CIMH) supported one of the first-ever Caribbean Climate Outlook Forums in Jamaica. These CariCOFs are designed to strengthen the interaction between National Meteorological and Hydrological Services and the end-users of climate information, such as the coffee industry. It was at this CariCOF meeting that a number of key partners were able to join forces and initiate a new project to try developing a Climate Early Warning System that could help to identify the climatic factors that trigger the outbreak of coffee leaf rust. This unique and innovative project was also designed to use social science approaches to understand how coffee farmers could help to co-create new climate forecasting services that could also help to boost the overall productivity of Jamaica’s coffee sector. The partners behind this collaborative effort include the International Research and Application Project (which is a partnership between Columbia University’s International Research, Institution for Climate and Society, and the University of Arizona), the University of West Indies, the Jamaican Coffee Industry Board, the Inter-American Institute for Cooperation on Agriculture, the Inter-American Institute for Cooperation on Agriculture, and the Caribbean Institute for Meteorology and Hydrology.

Zack Guido from the University of Arizona is one of the key people from the International Research and Application Project working on this project.

“With the early warning system, we are not only looking at the climatic factors and the plant and the pathogen, but we are also looking at the human and socio-economic factors. For example, does the farmer have to make the decision of buying books and uniforms for his kids, or buying chemicals to spray at the same time?” she says.

“With the early warning system, we started to discuss and formulate the ideas for the early warning system for coffee leaf rust and it has been a wonderful collaboration,” Elizabeth Johnson, the Inter-American Institute for Cooperation on Agriculture.

“Since 2010 Jamaica has had over four major droughts, and we’re learning how they actually intervene in a way that is not just about climate but is also about all the other multiple pressures that these farmers have to deal with,” he says.

Mr. Rhiney refers to this challenging environment as the “climate squeeze.” The challenge is that an increasingly variable climate could reduce the ability of these farmers to cope. So that’s why it’s very important to intervene in a way that is not just about climate but is also about all the other multiple pressures that these farmers have to deal with,” he says.

“‘You know it’s a tremendously powerful tool for us.’”

Richard Sharp, CEO of Clifton Mount Coffee Plantations.

To help get a better understanding of how farmers manage coffee leaf rust and the broader obstacles they face, about 600 households in 12 coffee farming communities have been surveyed and interviews have undertaken.
with key members of the entire coffee supply chain. Insights from the surveys, interviews, and exploratory climate science research will help the research team hone in on the climate information that farmers can actually use. The project is already exploring the development of new seasonal forecasts and whether they could help growers to anticipate their fertilizer and spraying needs. Fertilizer requires rain to deliver nutrients to the plants’ roots, and spraying pesticide is ineffective if the rain simply washes the chemicals away.

Richard Sharp, the CEO of Clifton Mount, one of the most famous and respected coffee plantations in the Blue Mountains, is in no doubt about the potential benefits of this new project.

“Once you’re able to forecast then you’ll be able to decide when to plant, when to fertilize, and when to reap. If you’re going to have excessive rain you may need to reduce your shade. If you’re going to have extended drought then you’re going to need to increase the shade. You know it’s a tremendously powerful tool for us,” he says.
A drian Trotman, the Chief of Applied Meteorology and Climatology at the Caribbean Institute for Meteorology & Hydrology (CIMH), says they only discovered how important their seasonal forecasts were for Jamaica’s bee-keeping community after their website crashed.

“When our webpage went down because of a fault we got an e-mail from a bee-keeper in Jamaica saying: ‘Where is your information? I make important decisions based on this information. I need it!’” he says.

The man in question is Roy Murray, the Managing Director of Jamaica’s Apiculture Products and Services Limited (APS), one of the country’s largest commercial beekeeping businesses with more than 800 beehives located in six of Jamaica’s 14 parishes. In Jamaica alone there are some 2,500 beekeepers with over 42,000 hives of honeybees that produce liquid honey, almost all for local consumption. Hive productivity averages about 27.7 kg of honey per year, and beekeepers earn more than USD 8.75 million from sales to retailers. Most of their product reaches consumers as bottled honey, with a total market value of about USD 11.4 million.

While the industry employs 10,000 people on a seasonal, part-time or full-time basis, Mr Murray says the main goal of APS is to boost supply for its network of 300 local retail outlets while also building towards the longer-term goal of creating a viable export business. However, he says, their business is almost totally at the mercy of variable climatic conditions.

“The performance of honeybees and honey production is very sensitive to weather and climatic conditions. From experience, the most important considerations for us are rainfall, drought, temperature...
and wind. Naturally, we have no control over any of these so we monitor them closely to take actions that will mitigate adverse effects and allow maximum possible returns when conditions are favourable," he says.

“There is nothing that a beekeeper can do but count his losses after the occurrence of an unseasonal weather event, such as prolonged rainfall, a ‘cold front’ or high winds. These conditions can significantly diminish or wipe out a honey crop, because of damage done to flowers that honeybees forage, as well as the restrictions on the bees,” he says.

Mr Murrays says his company now makes important business decisions on the basis of information gleaned from the reliable forecast information provided by agencies such as CIMH and the National Meteorological Service of Jamaica.

“The CIMH has been giving very good 3 to 6 month rainfall and temperature forecasts and the reliability of this information has also been improving,” he says.

“The CIMH has been giving very good 3 to 6 month rainfall and temperature forecasts, and the reliability of this information has also been improving,” says Roy Murray, Managing Director, Apiculture Products and Services.

He says the CIMH’s prediction that rainfall would be below normal during September-November 2015 meant they decided to purchase less sugar for feeding the colonies, which helped to directly reduce costs. While it is generally accepted that it is profitable for beekeepers to feed their bees in times of excess rainfall, it can be difficult and costly to do so at late notice because some advance preparation is required. Advance warning of above-normal rainfall gives farmers valuable time needed to prepare for bee feeding activities.

Below-normal rainfall can also lead to lower availability of nectar and less honey. During these times beekeepers avoid setting up new hives because they are more costly to keep. Given the harsh drought conditions that affected much of Jamaica in 2015 and the below-normal October rain, APS was originally anticipating another poor honey season and was considering a further reduction of its expansion plans. Thankfully, Mr Murray says these cuts may no longer be necessary because the most recent forecast indicated there would above normal rainfall for much of the next honey season.
"The industry had originally allocated millions of dollars for cane replanting, but this program was shelved after we provided early warning of El Niño conditions and below-average rainfall. Without this early warning, millions of dollars would have gone to waste as severe dry conditions emerged later in the year," he says.

The Fiji sugar industry was established over 100 years ago, and few other countries in the world depend as much on the effective management of this commodity. Sugar is Fiji’s third highest export earner and it contributes up to 40% of the nation’s total merchandise exports and 12% of its Gross Domestic Product (GDP). One in four people in Fiji depend on the sugar industry for their livelihoods, and its small farm units still rely on manual planting and harvesting techniques.

Fiji’s entire sugar crop is rain-fed and therefore highly dependent on levels of rainfall. Sugarcane requires water during the initial growing period but then depends on dry, cool conditions for sucrose accumulation. Nearly all of the cane growers’ management decisions are dependent on weather and climate forecasts, from initial land preparation and planning to fertilization, herbicide spraying, weed management, cane harvesting and shipping.

Mr Kumar says Fiji’s geographical location makes it highly vulnerable to climate variability and the frequency of many extreme types of weather, such as tropical cyclones, storm surges, floods and droughts.

"Fiji lies in an active cyclone zone with 1-2 cyclones passing within Fiji’s Extended Economic Zone (EEZ) every season. The El Niño-Southern Oscillation is one of the major drivers of climate variability in the region, and floods and droughts are also a common occurrence. One of the worst floods to affect the country occurred in 2009, followed by two larger floods in 2012. More recently severe drought conditions have been experienced in 2010, 2014 and 2015," he says.

"Farmers can make use of climate forecasts to avoid potential losses, minimise expenditure, maximise yields and minimize the environmental impacts of farming operations."

Sanjay Prakash, Acting CEO, Fiji Sugar Research Institute

The Fiji Meteorological Service now provides a quarterly seasonal rainfall outlook to support the production of sugarcane on Fiji’s two main islands of Viti Levu and Vanua Levu. Sanjay Prakash, the Acting Chief Executive Officer of Fiji’s Sugar Research Institute, says they now use this outlook to provide specific advice to farmers about different climate-related events that affect sugarcane production.

"Rainfall patterns have changed significantly, and this is affecting planting and total production. We are now seeing fewer rain days and less rainfall. In addition, there are longer spells of dry weather which is also affecting production," he says.

Mr Prakash says that improvements in climate forecasting are helping to support the development of the entire sugar sector in Fiji.

"Farmers can make use of climate forecasts to avoid potential losses, minimise expenditure, maximise yields and minimize the environmental impacts of farming operations. These new climate forecasting services are now allowing for better management of water and fertiliser applications. They are also helping to determine the crop varieties and locations for planting," he says.

The Fiji Sugar Corporation also uses this seasonal forecast information to support its milling and marketing activities. Better rainfall forecasts can help to boost profits by helping to determine exactly when the mills can be opened each season in order to allow the crop to achieve the highest possible sugar levels.

Mr Prakash agrees that the sugar industry is now in a much better position to manage the risks and opportunities created by a varied and changing climate.

"Industry stakeholders are now making more use of climate information in their decision-making process, such as when to start or end the milling, where and when to plant, and when to apply fertiliser," he says.
An innovative climate-forecasting project is helping Samoa to meet its ambitious target of producing 100% of its energy from renewable sources by 2017. Hydropower is by far the biggest source of renewable energy in Samoa, and the Afulilo Dam on Upolu Island generates around one-fifth of the country’s energy.

The Afulilo Hydropower Scheme was originally only designed to store water during wet season and operate at full capacity during the dry season. Now, with support from the Australian-funded Climate and Oceans Support Programme in the Pacific (COSPPac), Samoa’s National Meteorology Division has been able to work closely with the Electricity Power Corporation (EPC) to produce a water storage outlook model that can ensure a reliable supply of energy all year round.

EPC General Manager, Tologata TLeiua Tiumalialifano says the high variability of Samoa’s rainfall had previously impacted on the reliability of Samoa’s entire energy-supply network. He says the new water-storage outlook model means they can now adjust their operational processes to enhance management of the available water resources at the reservoir.

The capacity of the Afulilo Dam is about 10 million cubic metres, providing enough storage to supply energy for up to six months. But it is the only one of the country’s five hydropower facilities that is powered by water from a reservoir rather than rivers.

“Nationally we have very limited storage capacity so we rely heavily on Afulilo in terms of storing energy during the rainy season for the dry season. So that’s why our partnership with the Met Service is very important, because they can inform us of what is coming and we can plan ahead. It puts us in a much better position to make informed decisions about managing load demand and scheduling critical maintenance of our facilities,” he says.

Tologata says that EPC is now receiving clear operational and economic benefits from its ongoing partnership with Samoa’s National Meteorology Division.
"When they advised us in 2015 that the El Niño could mean our worst-ever dry season, we were then able to reserve water and fix all our diesel generators so we would not suffer from a lack of electricity during a drought situation," he says.

Prime Minister Tuilaepa Lupesoliai Neioti Aiono Salele Malielegaoi also believes that efforts to use climate forecasting services to improve the efficiency of its hydropower generation is a key part of the country’s renewable energy strategy.

"Climate forecasting services will play a key role because developing a better understanding of areas which are more prone to drought will allow us to allocate our climate change adaptation resources more effectively."

Prime Minister of Samoa, the Hon. Tuilaepa Lupesoliai Neioti Aiono Salele Malielegaoi

"Climate forecasting services will play a key role because developing a better understanding of areas which are more prone to drought will allow us to allocate our climate change adaptation resources more effectively.," he says.

"With hydropower we have quite a few small rivers which we identified way back in 1972, and we have been reasonably successful in generating hydro power during the rainy season. But it is also important to vary our own sources of supply to bring in solar and wind to replace the reduced output from our water resources," he says.

As recently as 2012 Samoa was generating 60% of its energy from diesel generators, with total fuel imports amounting to 95 million litres. Samoa’s Prime Minister believes that lowering the nation’s reliance on fossil fuels will help free up government funds and boost sustainable development.

In addition to improving the efficiency of the Afu’alolo Hydropower Scheme, Tologata says that new climate forecasting services will help Samoa to identify five new sites for hydropower facilities which will further help to support the government’s drive to reduce Samoa’s reliance on imported fossil fuels for power generation.

"The development of hydropower plants needs at least five or more years of historical data, so we have been collecting the rainfall and the streamflow data to help support the future development of these new hydropower plants," he says.

Salesa Nihmei, the Climate and Meteorology Officer at the Secretariat of the Pacific Regional Environment Programme, says they now want to use the example provided by the relationship between Samoa’s National Meteorological Division and the EPC to demonstrate the value of investing in climate forecasting services.

"We really want other interested sectors to understand there has to be an investment on both sides. If seasonal forecasting is going to deliver real value you need data from the Met Service, but you also need good data from their partner organizations. The different organizations that want to benefit from climate forecasting services really need to make an investment from their side to be able to develop relevant models that will help to improve decision-making," he says.

Mr Nihmei says the real benefits of climate forecasting will only start to flow when different sectors see the financial benefits and decide to commit real investment into co-developing products and services.

"Once these organizations can see how they are able to save money then their managers will really be able to buy into it. The national Met Services will then be able to provide improved services because the different SIDS governments will be able to clearly see the economic benefits," he says.
This new partnership is helping to provide longer term rainfall forecasting and water supply data that will help to manage national demand for hydropower.

Although located on the Caribbean coast of Central America, Belize includes more than 200 islands and it is therefore recognized internationally as part of the group of Small Island Developing States. In terms of average annual production the Challillo Dam produces about 230 of the 240 total gigawatt hours of hydropower produced in Belize. In 2014 this met approximately 44% of the country’s annual energy demand.

Catherine Cumberbatch, Deputy Director of the Belize National Meteorological Service, says this new relationship emerged directly from efforts to improve the quality of their climate forecasting services for key sectors.

“For the past two years we have been holding National Climate Outlook Forums where we present our country seasonal forecast and try to find out the needs of our stakeholders. These forums helped us to understand the stakeholders’ needs and how we can further assist them, and the energy sector was one such sector,” she says.

As part of this process Belize was able to leverage over USD 1 million in support from the World Bank-funded Belize Energy Resilience for Climate Adaptation Project (ERCAP). This project will involve the installation of automatic weather stations within the Challillo catchment area and the development of a ground-breaking hydrological model, which will enable BEL to use forecasting data to improve national hydro energy management and planning for the nation’s energy demand.
“We are really eager to have the met service provide us with stronger forecasting services because this is something that would definitely improve our management of the energy sector in terms of hydropower in Belize.”

Kevin Longsworth, Control Centre Manager, Belize Electricity Limited

Mr Kevin Longsworth, Manager of BEL’s Control Centre, says this new approach will help them to move away from a reliance on historical records: “The variations in the data from historical water flow are too big so we need to have more variables and that can only happen by getting forecasting data from the Belize met service. If we know the volume of water that is coming into the dam each month this will let us know much to draw down the dam levels each month and how to leave a certain margin for emergencies,” he says.

Mr Longsworth says that hydropower is the key area that stands to achieve the greatest improvements in the Belize energy sector. “We are really eager to have the met service provide us with stronger forecasting services because this is something that would definitely improve our management of the energy sector in terms of hydropower in Belize. The hydro-energy sector is easier to control because you can store and manage it, unlike other alternative energies such as wind and solar, which are very variable and change instantly,” he says.

Mr Longsworth says the rainfall data has also been subject to significant variation in recent years. “When we look at our historical data for water inflow during the rainy season it has been completely all over the place over the past five years. You don’t know what next year will bring, so that is where we could really benefit by getting stronger projections for those periods of the year,” he says.

Ms Cumberbatch says this project will not only build the country’s data set and capacity to understand trends and projections for the national energy sector, but it could also serve as useful model for other countries in the region.

Ms Cumberbatch says this project will not only build the country’s data set and capacity to understand trends and projections for the national energy sector, but it could also serve as useful model for other countries in the region.
A drian Trotman, the Chief of Applied Meteorology and Climatology at Caribbean Institute for Hydrology and Meteorology (CIMH), says it has become increasingly clear that meteorologists need to improve the way they communicate scientific information to the media and the wider public.

“We are trained to be scientists, to work on how to use equations, to use graphs, to use diagrams, to use maps, that’s our training. We are used to talking with other meteorologists and climatologists who can understand our jargon, but it is more difficult to express our thoughts and ideas to the general public. So the real problem for us is that the way we say things and the way a farmer or a politician might understand this information is not necessarily the same thing,” he says.

With support from the World Meteorological Organization, the Caribbean Institute for Hydrology and Meteorology has now developed a new media training programme in collaboration with the well-known BBC World presenter and journalist David Eades. As part of this training programme, over 40 meteorologists and journalists from throughout the Caribbean region participated in two separate training events designed to help increase understanding and cooperation between these two professions.

Mr Trotman says he now firmly believes that developing stronger and more trusted relationships with the media can also help to improve the way they communicate to decision-makers and the people who stand to benefit the most from this critical climate information.

“When it comes to communicating scientific information, there also has to be trust and understanding. The only way we can build this trust is through greater engagement and through interacting with each other on a more regular basis. And, in order to get better at communicating...
with our key audiences, we also have to get better at listening to why this information is important to them," he says.

Mr Eades says the main objective of his training was to provide both the meteorologists and journalists with practical skills in communicating climate forecast information in a simple and engaging way. The training was also designed to help national meteorology services to produce more proactive stories that could communicate the business and economic benefits of climate forecasting services.

“I think one of the biggest challenges for meteorologists is how do you get your message over to people who don’t necessarily understand the subject in the way that you do, so that’s basically most of us. I think the importance of looking at how you come across in the media is working out what is clear, what is simple, what are the good examples and good illustrations so that all of us understand what the questions are and what the answers are,” he says.

Elesha George, one of the participating journalists from the Antigua Observer, says the training has transformed her ability to make climate forecasting into useful news stories that people want to read.

“Bringing together journalists and those directly involved in climate related fields was a real eye opener. Prior to this workshop it was quite challenging to develop a captivating story based on climate predictions. But now I have a better understanding of how to let the general public know how climate predictions can affect their livelihoods,” she says.

The hands-on training package for meteorologists was specifically designed to provide practical techniques for engaging the media. A series of on-camera training exercises was also used to help them to communicate their key messages in a clear and simple way. A separate training was then designed to help journalists to understand the benefits of seasonal forecasts and how to relay critical information to people working in climate-sensitive sectors such as agriculture, energy, water, tourism and disaster risk reduction.