Global transport outlook to 2050

Costs of the transport sector under low carbon scenarios

Jean-François Gagné
Head of Energy Technology Policy Division
International Energy Agency

Consultation on Sustainable Transport in the post-2015 Development Agenda New-York, 26th of September

Content

- IEA mobility model (MoMo)
- ETP 2012 analysis
 - CO₂ mitigation potential
 - Costing out the scenarios
- Infrastructure insights
 - Road and rail infrastructure requirements to 2050
 - Investment needs for a low carbon future
- Conclusions

IEA Mobility Model (MoMo)

- Global transport energy use, emissions and materials
- 29 regions
- Significant data on technologies and fuel pathways
- Robust historic data, including
 - Historic stock, sales and fuel economies for 33 individual countries (expansion to 68 countries in progress) for road transport modes
- Cost of the transport system by adding up vehicles, fuels and infrastructure

ETP 2012

Scenarios to 2050

- 6°C (6DS): business-as-usual
- 4°C (4DS): expected 'normal' policies
- 2°C (2DS): pathways to a clean energy system

ETP 2012 2DS scenario for transport

An 'avoid, shift and improve' approach is the most cost effective to reach 2DS objectives

Mitigation strategies cost comparison

Global transport expenditure estimates to 2050

Focus on infrastructure

- IEA partnerships:
 - UIC (rail)
 - IRF (roads)
 - UITP (public transport)
 - WRI EMBARQ (BRT)
- Structured analysis
 - Historic relationship: travel to infrastructure ratio
 - Investments as a portion of GDP
 - Global analysis and regional limitations (e.g. congestion)
- Infrastructure insights (2013)

www.iea.org/publications/freepublications/publication/name,34742,en.html

Historic trends

Global road additions continue to grow at a rapid pace, while rail capacity has remained stagnant in most regions.

Historic trends

~2% of global GDP spent on road and rail infrastructure

Looking forward: insights to 2050

Potential cumulative savings: USD 20 trillion (2010 – 2050)

Role of investments to achieve 2DS

Conclusions

- Building a sustainable transport system is cheaper than a conventional one
- Financial flows shift from operating costs (fuels) to investment costs (infrastructure for mass transit, efficient vehicles)
- The role of governments and MDB are key to support this long term vision through targetted transport system investments
- Developing countries are primary targets, as the transport system is still to be built

