

Gall midge- and brown planthopper-rice interaction

— models for understanding insect-plant interaction

SURESH NAIR

Plant-Insect Interaction Group International Centre for Genetic Engineerting and Biotechnology (ICGEB) New Delhi India

ICGEB

80+ Signatory States, 60+ Member States, 3 Components: Trieste (Italy) – New Delhi (India) - CapeTown (South Africa) and a network of 40+ Affiliated Centres

The 5 instruments of ICGEB action

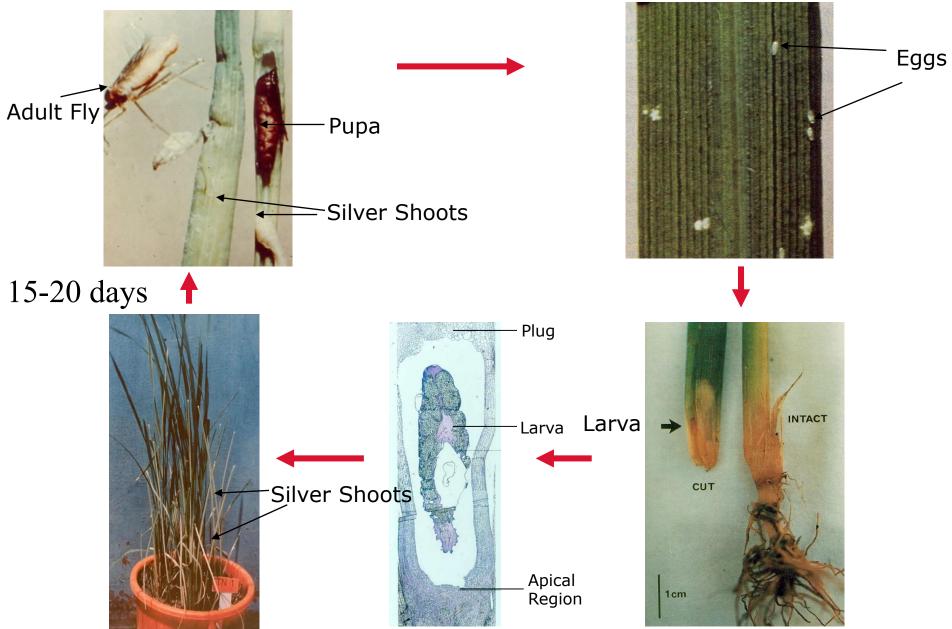
- Cutting-edge scientific research in its laboratories in Trieste, New Delhi and Cape Town
- Advanced training supported by long- and short-term fellowships for PhD students and post-docs
- Organisation of **Meetings**, Courses and Workshops at the international level
- Competitive research **grants** for scientists in Member Countries, including Early Career Return Grants
- **Technology transfer** to industry for the production of biotherapeutics and diagnostics

Introduction

- Plants face abiotic and biotic stress
 - Each confronts the plant with a particular set of challenges
- Plant adjusts its metabolism- Acclimation
 - Altered growth pattern avoid sustained exposure to stress
- Abiotic stress due to environmental factors like
 - High or low temperatures
 - High soil salinity
 - Excess or depletion of water in soil
- Biotic stress due to pathogens-bacterial, fungal or viral and/or pests
- Crop yield affected Rice being no exception
- India is one of the largest producer of rice which is a staple food here
- Apart from abiotic stress factors, rice yield threatened by major pests such as stem borer, brownplant hopper, the **rice gall midge**, the rice leaf roller.

- Plants and insects have co-existed for >350 million years
- Some interactions beneficial to both
- But by and large the most common interaction involves insect predation of plants
- Plants on its part build up defences against these herbivores

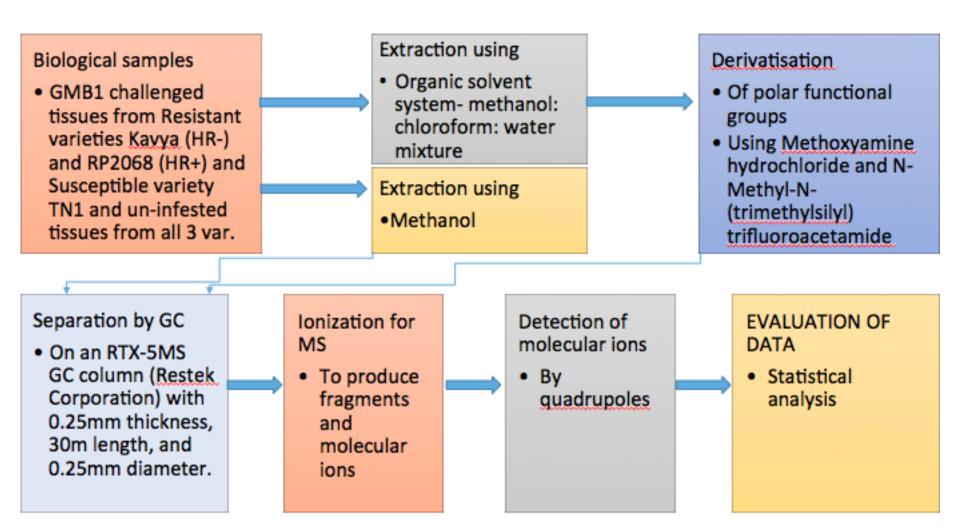
Leads to species diversity in both insect herbivores and hosts


About 14-18% of crops lost to insect pests (pre-harvest)!

- Decrease in arable land
- Pressure to use less pesticides
- Urgent need to increase food productivity

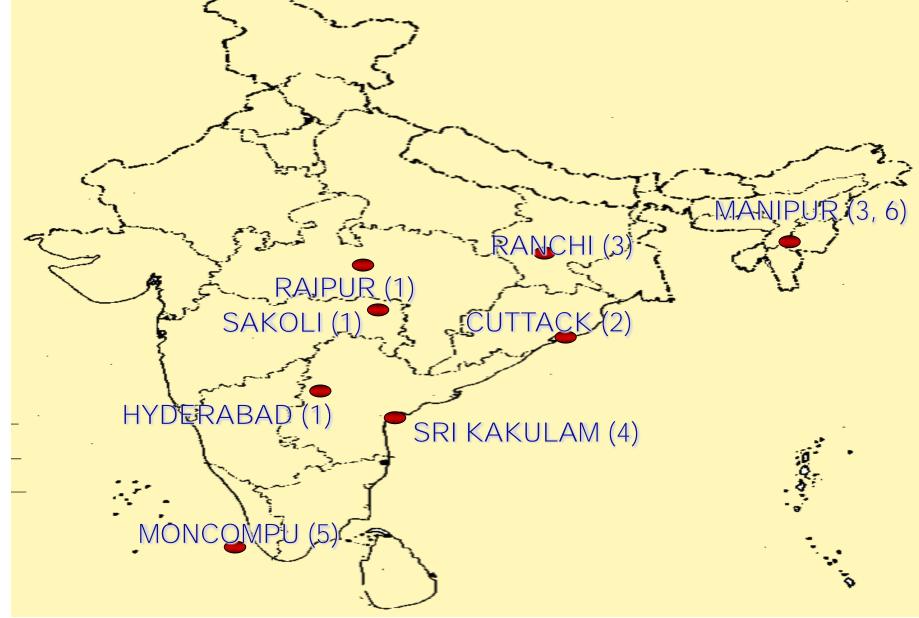
Host based resistance is the best way to solve this problem

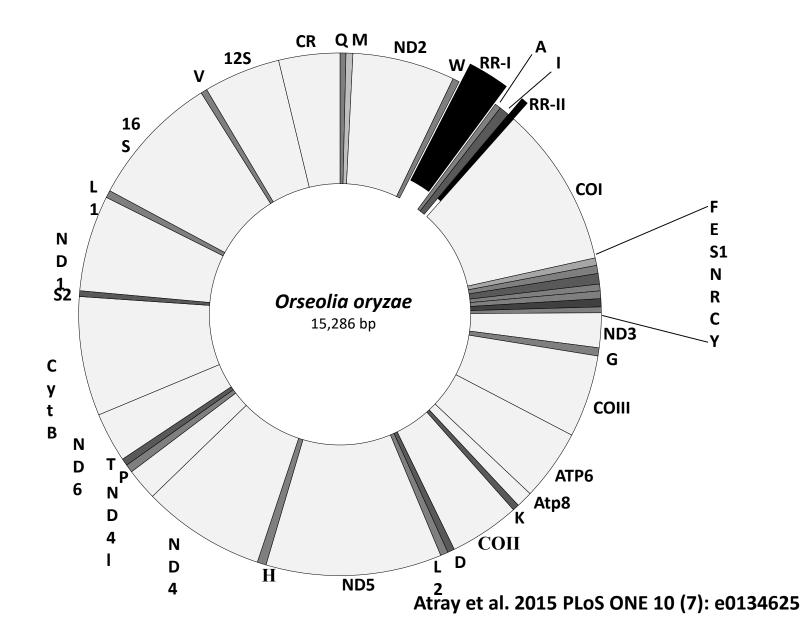
Life Cycle of the Rice Gall Midge



Gall Midge Resistance genes tagged and mapped at ICGEB

Genes		Reference	
			Chromosome
Gm2	Mapping	Theor Appl Genet (1994) 87:782	4
	MAS	Theor Appl Genet (1995) 91: 68	
Gm4	MAS	Theor Appl Genet (1996) 92:660	8
	Mapping	Theor Appl Genet (1997) 95:777	
Gm7	Mapping & MAS	Theor Appl Genet (2002) 105:691	4
Gm8	Mapping & MAS	Theor Appl Genet (2004) 109:1377	8


METABOLIC PROFILING WITH GC-MS


DISTRIBUTION OF GALL MIDGE BIOTYPES

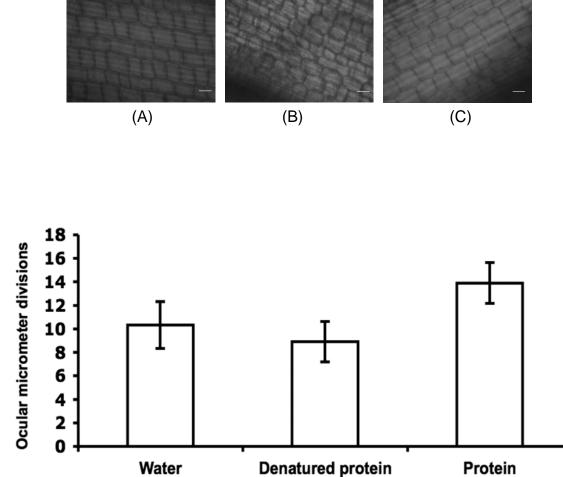
Mitochondrial Genome

Repeat 1

CGER
-
and the second s

Biotype/Species	Repeat Motif Present		
	ΤΑΑΑΑ	AAATT	ΤΑΑΑΤ
GMB 1	25	49	-
GMB 2	11	61	-
GMB 3	11	16 + 29	-
GMB 4	44	-	30-33
GMB 4M	41	28-37	-
GMB 5	-	-	-
GMB 6	5-7	52-58	-
Orseolia oryzivora	-	-	-
Orseolia fluvialis	-	-	-

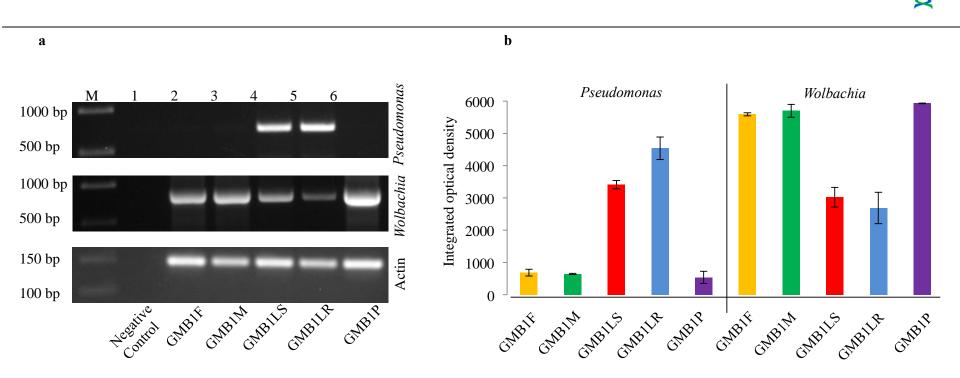
Repeat 2


Biotype/Species	No. of Repeats	
GMB 1	5.4	
GMB 2	None	
GMB 3	None	
GMB 4	3.4	
GMB 4M	4.4	
GMB 5	None	
GMB 6	5.4*	
Orseolia oryzivora	None	
Orseolia fluvialis	None	

*Not a perfect repeat

Atray et al. 2015 PLoS ONE 10 (7): e0134625

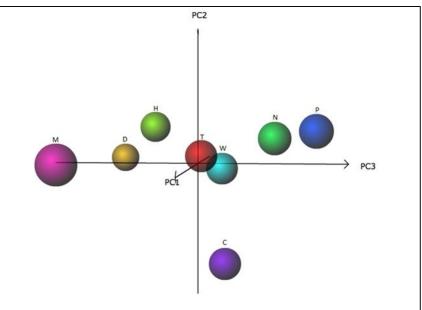
Coleoptile cell elongation assay



White bar=20µm

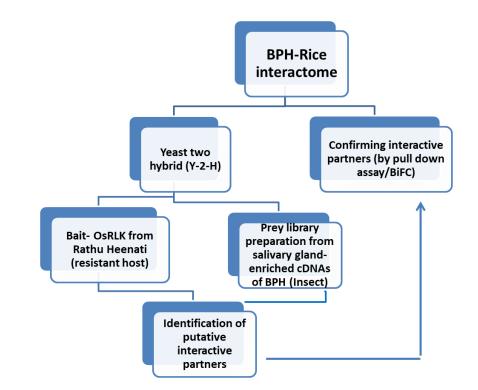
Susceptible rice variety used: Jaya

Sinha et al 2012. Insect Mol. Biol. 21: 593-603.


Rice gall midge metagenome

a, Semi quantitative PCR and **b**, image analyses of the agarose gel in 'a', for quantifying abundance of *Pseudomonas* and *Wolbachia* in different GMB1 samples. Actin gene served as the internal control.

- Resistance to BPH is known to be due to combination of antibiosis and antixenosis.
- It is very important to identify the BPH population prevalent in an area so that rice varieties with the corresponding BPH resistance gene could be deployed in the field.
- Moreover, due to the migratory nature of BPH, populations are always in a state of flux.



C: Cuttack, D: Delhi, H: Hyderabad, M: Manipur, N: Nalgonda, P: Punjab, T: Tripura and W: Warangal.

Combining PCR markers, for tandem repeats present in the control region of the BPH mitochondria, along with digital restriction fragment length polymorphisms (d-RFLP), eight BPH populations obtained from different rice growing regions of India

BPH-Rice interactions

BPH resistance gene *Bph3* (*LecRK1*, *LecRK2*, *LecRK3*) Rice variety: Rathu Heenati Candidate gall midge resistance genes identified and being validated through transformation of the susceptible rice variety TN1

- Gm4 (type: NBS-LRR) (Divya et al 2015).
- *Gm8* identified in rice variety Aganni, by quantitative PCR suggested that Aganni has a deviant form of inducible resistance that is salicylic acid (SA)-mediated, but without invoking HR (**Divya et al 2016**).

Divya et al 2015 Euphytica 203, 185–95

Divya et al 2016 Funct. Integr. Genomics 16, 153-69

1. Whole genome sequencing of the rice gall midge:

- Help in dissecting the molecular events occurring inside the insect during its interaction with rice host
- Various factors that synchronize the interaction

2. Study the mitochondrial genome:

- Increase the amount of information present on phylogenetic relationships with other insects
- Interpret broader aspects of genome evolution
- **3. Transformation of susceptible rice variety TN1 with** *Gm4* **candidate resistance gene** (in collaboration with other PMB Group PIs)
- 4. Metagenome of the rice gall midge and BPH
- 5. Rice-brown planthopper (BPH) interaction

- Less reliance on and use of pesticide will not only slow down the degradation of the ecosystem but will also contribute to the prevention of loss of biodiversity
- Moreover, using natural resistance we can produce more in terms of crop yield; then there will be less pressure to convert forestland to farmland. This will also prevent loss of biodiversity. Green cover loss is slowed down.
- Continued screening of germ plasm will ensure that new sources of insect resistance genes are identified and ensure that these donors are conserved before they become extinct.

- 1. Carry out vigorous screening of crop germ plasm to identify appropriate resistance genes against major pests
- 2. Encourage strategic research to get a better understanding of key insect plant-interactions, specially those of extremely important crop plants such as rice, wheat and maize
- 3. Device molecular tools to get a better understanding of insect pests specially with regard to their population structure, migratory patterns and breeding and feeding behaviour.

Deepak K. Sinha

Isha Atray

Ruchi Agarrwal

Ayushi Gupta

Collaborators

Indian Institute of Rice Research (IIRR), Hyderabad, INDIA

Agri Biotech Foundation (ABF), Hyderabad

> Dr. J. S. Bentur Dr A. P. Padmakumari Nidhi Rawat Himabindu Divya

Abhishek Ojha

Himani Ashra

Rashi Anand

Funding

DBT National Fund, ICAR ICGEB, Core Funds