Seminar on African Electrical Interconnection

Module 3 – Resource Development
Module 3 – Resource Development

Index:

1. Resource planning? Why?
2. Developing a Generation Resource Plan
3. Managing Uncertainties
Module 3 – Resource Development

Index:

1. Resource planning? Why?
2. Developing a Generation Resource Plan
3. Managing Uncertainties
Characteristics of electricity

- It is a production factor
- It is a primary good for families and social development
- It can be obtained from any primary energy sources
- It is the only exploitation vector for some energy sources (hydro, geo and nuclear)
- It cannot be replaced in many processes/appliances
- Totally “clean” at the point of use
Per-capita electricity and per-capita income in 158 countries in 2001

Source: ENERDATA
Characteristics of electricity

- High demand volatility (daily, weekly, seasonal)
- Impossibility to be stored (supply/demand coincidence in real time, generation system to be designed for the maximum demand)
- Very high quality required (micro-interruptions, wave shape) for an increasing number of “high tech” appliances
- Laws of physics dominate in the transmission/distribution networks (Kirchoff)
Characteristics of the electricity industry

- Long-term view (long lead time and long service life of equipment)
- Economy of scale and Capital-intensive
- Operational complexity that spans many time frames
- Complex product (mix of energy, capacity, reliability, voltage control, …)
- Natural monopolies in transmission and distribution
- Externalities (economic and environmental)
And then......why a resource planning?

- Selection of the optimal supply sources among those available in a given region
- Research of the economic optimum to satisfy the demand with an adequate quality level of the service
- Selection of the most suitable generation system
- Economic evaluation of the generation system
Optimising the generation mix and unit sizes for a given region

Requires:
• A thorough knowledge of the region’s energy potential;
• The capacity to agree on who develops what, when, where and at what cost,

Brings forth the following benefits:
• A diversified production base capable of meeting electricity demand at the best cost;
• Development choices that respect the principles of sustainable development and avoid the use of highly polluting energy sources.

Is facilitated by the interconnection of power systems that creates favorable conditions for the optimum integrated use of a region’s available resources
Module 3 – Resource Development

Index:

1. Resource planning? Why?
2. Developing a Generation Resource Plan
3. Managing Uncertainties
Developing a generation resource plan......

- Following a «classic» process that generally involves:
 - area demand forecast;
 - alternative demand management options;
 - supply side resource options;
 - political, environmental and cultural issues and constraints;
 - utility goals;
 - evaluation of alternatives;
 - selection and approval of a plan.
......step by step

National/regional scenario (economy, demography, technology, etc.)
Sectoral and global policies

ENERGY DEMAND FORECAST

LOAD FORECASTING AND LOAD SHAPE

RELIABILITY ANALYSIS

GENERATION RESOURCES AND CAPACITY EXPANSION

PRODUCTION/OPERATION SIMULATION

TRANSMISSION/INTERCONNECTION PLANNING

ECONOMIC/FINANCIAL ANALYSIS
Load forecasting and load shape (energy and capacity)

From energy forecasts, capacity peak demand and load curves are worked out on the basis of:

✓ historical sectoral load curves;
✓ contemporary factors;
✓ expected trends in economic structure;
✓ expected evolution of habits and lifestyles;
✓ expected DSM actions.
The acceptable reliability target for the system is a key parameter, either set by regulators or by customers’ “quality demand”.

The loss-of-load-probability (LOLP) is commonly used to translate a reliability target index into a reserve margin level.
Generation resources and capacity expansion

- Once the future capacity demand (peak load + reserve margin) has been projected, all the options, which can contribute to cover it, must be considered. Among them:
 - existing generation plants and their decommissioning dates;
 - possible options/technologies for new generation plants;
 - viable DSM programs;
 - energy conservation plans.

- At this stage, fuel cost projections are crucial parameters.
Generation resources and capacity expansion

• The analysis must take into account:
 – domestic energy resources;
 – options regarding energy imports and development of interconnections.

• Various strategies can be analysed
 – Market penetration
 – Fuel convergence
 – Portfolio (equipment, location, fuel)
 – Specialization
Role of equipment

- Peaking, Intermediate, Base
- Related to cost structure
- Related also to flexibility of operation
- Role of equipment may vary over time
 - because of aging
 - because of external condition
Cost of project $j = F_j + V_j \times T$
Load duration curve

Chronological load

Sorted from high to low
Optimal repartition of equipment type
Load duration curve coverage

MW

1 hour 8760

BASE LOAD PLANTS

MODULATION PLANTS

PEAK LOAD PLANTS
The final target consists in working out a least total system cost plan (capital, operation, maintenance, fuel...).

Tradeoffs among different types of plants can be very complex to evaluate, especially with respect to the future operation of the system. New models are being developed to optimise the options simultaneously.
Transmission/interconnection planning

- The target consists in the definition of the best network growth pattern related to expected load and generation future trends.

- Alternative designs can be developed for the same horizon-year expected conditions.

- The plan can be heavily affected by the engineering judgment and must fit with load levels well above present system peak load conditions.

- It includes basically steady-state thermal loading and voltage conditions. With the expansion of the interconnected power system, it also includes transient stability, post transient voltage and reactive margin analysis.
Planning the transmission network

Reference framework

Steps

Demand forecast

Demand forecast

New generation sites

Long-term studies
(20-25 years)

Medium-term studies
(5-6 years)

Strategy

Load nodes

Social & environmental constraints

New technologies
Flexibility
Standardisation

Tactics

Quality
Short circuit levels
Load shedding
Protections
Controls
etc...

Load nodes

Social & environmental constraints

New technologies
Flexibility
Standardisation
Three approaches for evaluation of development plan

TRADITIONAL
- Economic approach
- Financial approach

NEW PARADIGM
- Market approach
Economic analysis

- It is aimed at evaluating the total cost to society (monetary and non monetary), at national and regional level.
- It is used to calculate marginal costs (tariff studies).

BASIC IDEA
To obtain a social optimum where:
- Intergeneration benefits are maximised, and
- Resources are optimally allocated between users.
Financial analysis

- It is generally used to evaluate and predict the effect of investment decisions on the organization’s balance sheet, income statement and cash flows.
- It normally includes a detailed description of organization’s financial structure, accounting data and management policy information.
- Used to establish revenue requirement (Tariff level) that will insure sufficient internal generation of funds and make it a bankable project.

BASIC IDEA
To generate enough revenue to pay current expenses, repay debt and accumulate capital for new investments.
Market approach

• Generation price is the value at which supply and demand are at equilibrium

• Used to
 – Screen market opportunities
 – Evaluate returns and risk

• Required by
 – Shareholders
Comparison of the 3 approaches

<table>
<thead>
<tr>
<th>Basic Idea</th>
<th>Responsible Towards</th>
<th>Tariff Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Optimum</td>
<td>Society</td>
<td>Marginal Cost</td>
</tr>
<tr>
<td>Carry-on Concern</td>
<td>Lenders</td>
<td>Revenue Requirement</td>
</tr>
<tr>
<td>Supply-demand Equilibrium</td>
<td>Shareholders</td>
<td>Market Prices</td>
</tr>
</tbody>
</table>
Comparison of the 3 approaches

<table>
<thead>
<tr>
<th>ECONOMIC APPROACH</th>
<th>RELIABILITY CRITERIA</th>
<th>REGULATORY NEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Included in the process</td>
<td>Moderate</td>
</tr>
<tr>
<td>FINANCIAL APPROACH</td>
<td>Exogenous constrain</td>
<td>Medium (Rate Base)</td>
</tr>
<tr>
<td>MARKET APPROACH</td>
<td>Accounted by market prices</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Environnement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Market Power</td>
</tr>
</tbody>
</table>
Comparison of the 3 approaches

<table>
<thead>
<tr>
<th>ECONOMIC APPROACH</th>
<th>MEASUREMENT TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary & Non-Monetary</td>
<td>NPV IRR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FINANCIAL APPROACH</th>
<th>Financial Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MARKET APPROACH</th>
<th>Share Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market value</td>
<td>VAR MTM</td>
</tr>
</tbody>
</table>
Module 3 – Resource Development

Index:

1. Resource planning? Why?
2. Developing a Generation Resource Plan
3. Managing Uncertainties
Planning for uncertainties

- Significant changes in needs, costs or impacts are to be expected

- A resource plan should be quickly and efficiently adjustable through a continued balancing and rebalancing of numerous supply-side and demand side options

- A number of alternative scenarios should be considered and a response strategy for each should be prepared
The “scenario” approach

- Future scenarios consisting in different sets of coherent assumptions should be evaluated focusing more on the consequences rather than the events themselves.

- A subset of these scenarios based on their consequences should be established, defining the most likely bounds of what to expect in the future.

- The future resource plan should focus on developing a flexible action plan covering the entire subset, consisting of strategic elements viewed as building blocks that can be put together in a number of ways to accommodate plausible future scenarios.
Module 3 – Resource Development