Department of Economic and Social Affairs (DESA)
Economic and Social Commission for Western Asia (ESCWA)

Strengthening National Capacities to Manage Water Scarcity and Drought in West Asia and North Africa

THE ANALYSIS, MAPPING AND IDENTIFICATION OF CRITICAL GAPS IN PRE-IMPACT AND PREPAREDNESS DROUGHT MANAGEMENT PLANNING IN WATER-SCARCE AND IN-TRANSITIONING-SETTINGS COUNTRIES IN WEST ASIA/NORTH AFRICA

Note: This document has been reproduced in the form in which it was received, without formal editing.
Table of Contents

Acronym List
Summary of Figures and Tables

1. Executive Summary
1.1 Introduction
1.2 Purpose and objectives
1.3 Need of national action and drought mitigation strategy
1.4 Existing resources, capacities and dissemination systems in the region.
1.5 Assessment of drought management knowledge and practices and identification critical gaps

2. Review standard approaches in drought management
2.1 Standard approaches vulnerability and application
2.2 Impact of standard approaches on drought management effectiveness

3. Effective Drought Monitoring and Early Warning Systems in the region
3.1 Importance and need of early warning systems
3.2 Drought early warning systems in developed countries
3.2 Impact of application of early warning systems in the selected countries
3.3 Assessment of required resources and capacity for drought monitoring

4. Drought risk reduction programs
4.1 Review of international drought management programs (WMO, FAO, UNCCD,etc)
4.2 Drought risk management at multiple levels
4.2 Incorporating community involvement into drought risk management
4.3 State and community level conflict prevention by implementing drought management
4.3 Strategies for natural resource conflict prevention
4.3 Drought risk due to transboundary water issues
4.4 Experience in including micro-finance and index-based insurance in the region

5. Drought management national policy and response
5.1 Review of drought management policies in the region
5.2 Elements of effective drought policies and planning
5.3 Developing national strategies and action plans for drought preparedness
5.4 Interaction between current drought management polices and IWRM plans
5.5 Emergency response that reinforce national drought management policy goals
5.5 Capacity needs assessment of national policy makers in the region

Annex
A.1 Potential drought mitigation approaches in the West Asia North Africa Region

Acknowledgements
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDD</td>
<td>Consecutive Dry Days</td>
</tr>
<tr>
<td>CDs</td>
<td>Compact Discs</td>
</tr>
<tr>
<td>CIHEAM</td>
<td>International de Hautes Études Agronomiques Méditerranéennes</td>
</tr>
<tr>
<td>DIS</td>
<td>Desertification Information System (DIS)</td>
</tr>
<tr>
<td>DMCSEE</td>
<td>Drought Management Center for South-Eastern Europe</td>
</tr>
<tr>
<td>EDO</td>
<td>European Drought Observatory</td>
</tr>
<tr>
<td>EM-DAT</td>
<td>Emergency Events Database</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Authority</td>
</tr>
<tr>
<td>EROS</td>
<td>Earth Resources Observation and Science</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FAPAR</td>
<td>Fraction of Absorbed Photosynthetically Active Radiation</td>
</tr>
<tr>
<td>FEWS NET</td>
<td>Famine Early Warning Systems Network</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environment Facility</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Water Partnership</td>
</tr>
<tr>
<td>HMNDP</td>
<td>High-Level Meeting on National Drought Policy</td>
</tr>
<tr>
<td>IAMZ</td>
<td>Mediterranean Agronomic Institute of Zaragoza</td>
</tr>
<tr>
<td>ICARDA</td>
<td>International Center for Agricultural Research in Dry Areas</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>IWRM</td>
<td>Integrated Water Resource Management</td>
</tr>
<tr>
<td>MARH</td>
<td>Ministère de l'Agriculture, de l'Environnement et des Ressources</td>
</tr>
</tbody>
</table>
Tables and Figures

<table>
<thead>
<tr>
<th>Figures/Tables</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Countries Dry land Classification</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Distribution of population affected by drought between 1990 to 2004</td>
<td>9</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Distribution of population affected by natural disaster compared to drought between 1978 to 2004</td>
<td>10</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Relation between various indicators</td>
<td>27</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Drought impacts in Africa</td>
<td>28</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Drought impacts in Asia</td>
<td>28</td>
</tr>
<tr>
<td>Figure 7</td>
<td>The European drought monitoring map</td>
<td>38</td>
</tr>
</tbody>
</table>

MEDROPLAN: Mediterranean Drought Preparedness and Mitigation Planning
MOU: Memoranda of Understanding
NAP: National Action Plan
NAPA: National Adaptation Program for Action
NDMC: National Drought Mitigation Center
NDO: National Drought Observatory
NDVI: Normalized Difference Vegetation Index
NEMEDCA: Network on Drought Management for the Near East, Mediterranean and Central Asia
NGO's: Non-Governmental Organizations
NOAA: National Oceanic and Atmospheric Administration
NPC: National Project Coordinator
PDSI: Palmer Drought Severity Index
RJGC: Royal Jordanian Geographical Center
SA: Standard Approaches
SDC: Swiss Agency for Development and Cooperation
SMAS: Maghreb Early Warning System to Drought
SPI: Standardized Precipitation Index
SWI: Standardized Water Indexes
SWSI: Surface Water Supply Index
TNA: Training Needs Assessments
TOT: Training of Trainers
UN: United Nations
UN/ISDR: United Nations International Strategy for Disaster Reduction
UNCCD: United Nations Convention to Combat Desertification
UN-DESA: United Nations Department of Economic and Social Affairs
UNDP: United Nations Development Programme
UNESCO: United Nations Educational, Scientific and Cultural Organization
UN-ESCWA: United Nations Economic and Social Commission for Western Asia
USA: United States of America
USDA: United States Department of Agriculture
USGS: United States Geological Survey
WMO: World Meteorological Organization
Figure 8	The U.S. drought monitoring map	39
Figure 9	China's drought monitoring map	40
Figure 10	Africa's drought monitoring map	40
Figure 11	Indicative list of Drought Risk Management activities	46
Table 1	Examples on effects of the 1998-2001 Drought in some of the North Africa and West Asia countries	11
Table 2	Expert Group Meeting drought management checklist	12
Table 3		20-24
Table 4	List of main drought indicators	26
Table 5	Vulnerabilities to drought impacts	30
Table 6	Vulnerable populations to drought	31
Table 7	Vulnerable economic sectors to drought	32-33
Table 8	Standard Approaches in drought management	34-35
Table 9	Drought monitoring indicators and drought monitoring means	42
Table 10	4 stages of drought	42
Table 11	Main objectives for natural resource conflict prevention	50
Table 12	Target groups for drought management	60
Table 13	Potential drought mitigation approaches in the West Asia/North Africa region	61
1. Executive Summary

Drought has become an increasingly frequent and major threat to human security in most of the Arab countries in transition located in arid and semi-arid areas of North Africa and Western Asia. According to the centre of Research and Epidemiology (EM-DAT), the percentage of the population affected by drought alone is 51%, compared to 49% of all other disasters combined. This fact illustrates the severity of the issue of drought. It is also clear that the Middle East and Asia regions are the most affected regions in the world, being that 83% of the population in this area is affected by drought.

This project aims to aid in minimizing the risk of drought through analysing, mapping and the identification of critical gaps in pre-impact and preparedness drought management planning, and also to strengthen the capacities of national planners, policy makers and stakeholders in West Asia and North Africa. This will lead to an increased awareness and knowledge of tools and methodologies for national planners, policymakers, institutions, and stakeholders in countries experiencing a transition to develop pre-impact and preparedness drought management plans. The study focuses on the following:

- Existing resources and capacities of climate information and dissemination systems in the region
- Standard approaches in drought management
- Drought monitoring and early warning systems in the region.
- Drought impact and severity
- Vulnerable populations and economic sectors to drought
- Drought risk management strategies
- Drought risk reduction programs including micro-finance and index-based insurance in the region
- Natural resource conflict prevention at various levels
- Drought management, national policy, drought mitigation plans and response
- Capacity of national planners and policy makers in West Asia and North Africa

The assessment of country drought management status and gaps in knowledge is based on collected information from published studies, direct interviews with decision makers in some countries and collected information from the presentations and country representatives at the EGM meeting in Beirut, Lebanon that took place from 24 to 26 June 2013. The assessment results indicate that:

- All countries are still employing a reactive approach in addressing drought. It is necessary that these countries start to move towards a proactive drought management approach. This proactive approach is based on short and long term measures and includes monitoring systems for a timely warning of drought conditions.

- The countries rely on international organizations such as UN organizations, ICARDA and ACSAD for managing drought issues. Drought is not a part of their strategic planning.

- Some countries formed a national committee or commission to be responsible for drought management, action plans, and dissemination systems. The committees include members from ministries, universities, NGOs, and research centers. International organizations,
mainly UN organizations and ACSAD, helped most of the countries in the North Africa and West Asia region to develop their own drought management strategy or action plans and provided them with the necessary expertise in this regard. Unfortunately, many of the countries lack the resources to implement the recommended actions.

- In all countries except Egypt, the responsibility of drought is given to one ministry, such as ministry of water, environment or agriculture. This is because efficient drought management should be the responsibility of one body or unit. This unit will involve and coordinate ministries, research institutions, NGOs, and other stakeholders.

- None of the countries involved have employed standard approaches to drought management. The adoption of standard approaches in drought management will minimize drought risk and impacts and will facilitate the decision making process.

- Drought management requires regional cooperation and sharing of drought information. This cooperation remains at a very low level, and in many cases does not exist. In order to reduce the drought risk from transboundary water issues, it is recommended to encourage and strengthen the joint dialogue between riparian countries on all levels, including political and technical. This will provide a common reference and planning framework, and will increase information exchange and coordination between riparian countries. However, work is still needed in several fields, such as:
 - Development of common systems for monitoring and data management.
 - Exchange and share of information related to drought
 - Establishment of joint management plans
 - Resolution of disputes according to international laws and regulations

- The countries do not have the capacity to do drought projections. Therefore, it is recommended to utilize the expertise of WMO by using their models for this purpose.

- The countries lack an integrated drought management system with the following components: strategy, information systems, monitoring and early warning systems, and mitigation plans.

- Monitoring and early warning systems are an integral part of efforts worldwide to improve drought preparedness. Timely and reliable data and information is the cornerstone of effective and proactive drought planning. However, the UN/ISDR (2006) recently completed a global survey and found that early warning systems for drought are more complex than those for other hydro-meteorological hazards and are, consequently, less developed globally. Monitoring drought presents unique challenges because of drought’s distinctive characteristics (i.e., low onset, non-structural impacts, and large spatial extent). Therefore, choosing the appropriate indicators of drought and formulating those measurements into an effective early warning system can be challenging. There are several early warning and monitoring systems in more developed countries. The most popular ones are the United States (The U.S. Drought Monitor USDM), European Union (The drought early warning and monitor system developed by the Drought Management Centre for South-eastern Europe (DMCSEE)) and the European Drought Observatory (EDO) by the European Commission for Joint Research, China (The National Climate Center, which is in charge of the monitoring, diagnosing, and predicting the timing of
drought), and Africa (The Africa Drought Monitoring System). In the North African and Western Asian region, Morocco provides a good example with its National Drought Observatory (NDO). The NDO was launched in 2001 with the goal of collecting, analyzing, and delivering drought-related information in a timely manner, which includes assessing the frequency and severity of drought. Even though great strides have been made in these efforts in North Africa and West Asia, in general, there are still many challenges to overcome in developing effective drought monitoring systems. Some of the most pressing challenges include:

- Enhancing data quality and collection network densities to measure the main drought indicators (rainfall, water level or supply, vegetation cover, livestock, and diseases)
- Reducing the cost and increasing the sharing of data,
- Making early warning information more accurate and user friendly,
- Integrating physical and social drought indicators into systematic and comprehensive monitoring and early warning systems,
- Providing support to create and maintain systems.

- The countries currently do not conduct an impact assessment to link desertification, and migration and conflict together.

- Tunisia and Morocco are the two most advanced countries in drought management, but their management systems still need more improvements. Other countries are either still in the strategy development stage or in the emergency stage (reactive approach) once droughts occur.

- As agreed in the Expert Group Meeting (EGM), five pilot countries will be selected to be covered under this project. A detailed capacity development plan will be developed in the next stage of this project to list the areas to be covered in each country. A realistic national training and capacity building program for drought management needs will be formulated and implemented. A program of resource enhancement encompassing all institutions, organizations, and individuals also will be developed. The capacity development/training programs require 1) The identification of the target group and 2) Capacity needs assessment for each country.

Capacity development can take different forms, such as:
- Supporting the countries in creating a responsible body on drought management
- Providing necessary expertise and resources to develop a drought management system, or parts of the system, such as strategy, standards or monitoring and early warning systems in each of the covered countries.
- Developing a standard approach to drought management
- Organizing a special training session for policy makers or other groups
- Organizing and conducting meetings, conferences and workshops on drought management
- Creating manuals and standard procedures
1.1 Introduction

Drought has become an increasingly frequent and major threat to human security in most of the Arab countries in transition located in arid and semi-arid areas of North Africa and Western Asia, as shown in Figure 1. Rainfall in this region is scarce, and its distribution is highly variable. This was especially apparent in the region during the last three decades. The responses to severe drought by countries in the region are primarily ex-post (reactive) and tend to emphasize emergency relief, take effect after or during drought events and do not incorporate methods that support water conflict prevention. In response, the United Nations Department of Economic and Social Affairs (UN-DESA), in cooperation with the United Nations Economic and Social Commission for Western Asia (UN-ESCWA), along with other United Nations cooperating agencies, are implementing a regional capacity development project entitled, “Strengthening National Capacities to Manage Water Scarcity and Drought in West Asia and North Africa”. The project also answers a call for urgent action from the Rio +20 Conference on Sustainable Development and the Outcome Document, The Future We Want, to take effective measures in dealing with drought and water scarcity, as well as developing disaster risk reduction and community resilience. The project’s timing coincides with a major UN-system wide effort, in particular the WMO, the UNCCD and the FAO, in organizing the High-Level Meeting on National Drought Policy (HMNDP) during 11-15 March 2013, and the Final Declaration that encourage countries to develop and implement National Drought Management Policies. The declaration also urges related UN agencies and programmes to assist governments, especially the developing countries, in the development of National Drought Management Policies and their implementation.

Figure 1- Dry land Classification
1.2 Purpose and Objectives

The project’s main objective is to analyse, map and identify the critical gaps in pre-impact and preparedness drought management planning and to strengthen the capacities of national planners, policy makers and stakeholders in Western Asian and North African countries. This project will lead to an increased awareness and knowledge of tools and methodologies for national planners, policymakers, institutions, and stakeholders in transition countries in order to develop proactive drought management plans. The study focuses on the following:

1. The existing resources and capacities of climate information and dissemination systems in the region.
2. The existing resources and capacities of drought monitoring and early warning systems in the region.
3. Experience with drought risk reduction programs, including micro-finance and index-based insurance in the region.
4. Other pre-impact and preparedness measures and programs, including the application of drought resistant agriculture, and water resources conservation and management plans.

1.3 Need for National Action and Drought Mitigation Strategy

The Centre for Research on the Epidemiology of Disasters has an emergency events database (EM-DAT)\(^1\), which includes statistics of the number of people killed or affected by natural disasters around the world. According to the published figures 2 and 3, the distribution of the population affected by drought alone is 51%, compared to 49% of all other disasters combined. This fact illustrates the severity of the issue of drought. It is also clear that the Middle Eastern and Asian regions are the most affected regions in the world, being that 83% of the population in these areas is affected by drought.

![Figure 2 - Distribution of population affected by drought between 1990 to 2004](image)

In addition, the database reported that in 1983, an especially severe drought in Sudan killed an estimated 150,000 people and affected another 8.4 million people over the next several years. 8.6 million people were again affected in Sudan when they were struck by drought in 1991. More recently, the drought from 1998 to 2001 was reported to be the worst in 50 years, affecting millions of people across the Middle East. According to EM-DAT, in 1999, nearly 40 million people were affected, including 37 million in Iran and another 3 million in Morocco, Jordan, Pakistan, and Syria. By 2000, the number had grown to nearly 50 million people as drought expanded across much of the Near East from Morocco to Tajikistan. The drought continued unabated through 2001 before beginning to lessen in most areas by 2002.

A drought management strategy is needed because it directly impacts a great number of humans, ecosystems, and animal habitats. Drought often results in a shortage in water resources, crop failures, loss in livestock, an increase in diseases, a reduction in hydropower, increased soil erosion, an increase in fires, and an increase in social stress. All this leads to human losses, mass migration, reduced security, and potential violent conflict. Therefore, there is a great need to develop and implement drought management strategies and action plans in countries affected by drought in order to increase societal and environmental resiliency and to enhance drought response and recovery capabilities. Clear examples of the effects of drought various countries in the Middle East are listed below.

<table>
<thead>
<tr>
<th>Region</th>
<th>Country</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Asia</td>
<td>Jordan</td>
<td>180,000 farmers and herders affected, and food insecurity for 4.75 million people; 1% of cereals and 40% of red meat and milk harvested</td>
</tr>
<tr>
<td></td>
<td>Lebanon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syria</td>
<td>47,000 nomadic households forced to liquidate their livestock assets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urban water shortages and hydropower reductions</td>
</tr>
<tr>
<td></td>
<td>Yemen</td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td>Egypt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sudan</td>
<td>Sudan was struck by several droughts which resulted in famine across many parts and millions of people were affected.</td>
</tr>
<tr>
<td></td>
<td>Libya</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tunisia</td>
<td>Agricultural losses and US$46 million in intervention actions (i.e., livestock vaccinations and nutrition products, subsidizing forage product prices, and attribution of yearly credit for farmers)</td>
</tr>
<tr>
<td></td>
<td>Algeria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morocco</td>
<td>1 million hectares of cropland affected, resulting in 5 million tons of wheat imports in 2001 (US$500 million in total cereal imports)</td>
</tr>
</tbody>
</table>

Table 1- Examples on Effects of the 1998-2001 Drought in some of the North Africa and West Asia countries

Drought action plans can help decision makers to identify sectors that are vulnerable to drought, investigate management options before a crisis, and increase readiness for the implementation of the most appropriate and cost-effective strategies available. This will foster a more informed decision-making process and the development of an efficient drought management program. In addition, drought management strategies and action plans can create opportunities for a broad range of stakeholders to participate in the decision-making process, which can foster capacity building, conflict resolution, and collaborative relationships.

1.4 Existing Resources, Capacities and Dissemination Systems in the Region.

Most countries formed a national committee or commission to be responsible for drought management, action plans and dissemination systems. The committees include members from ministries, universities, NGOs and research centres. International organizations, mainly FAO, ESCWA, ICARDA and UNDP helped countries in North Africa and West Asia to develop their own drought management plans and provided them with expertise. Unfortunately, many of these countries lack the resources to implement the recommended action plans. In the EGM meeting a checklist form was distributed to the country representatives to collect information on the drought management status in each country. The summary of collected information is listed in the table below.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>West Asia</td>
<td>Jordan</td>
<td>Ministry of Environment</td>
<td>exist</td>
<td>exist</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>exist</td>
<td>surface water with Syria and Palestine , GW with SA</td>
</tr>
<tr>
<td></td>
<td>Lebanon</td>
<td>Ministry of Agriculture Ministry of Energy & Water</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>projects</td>
<td>projects</td>
<td>none</td>
<td>surface and GW with Syria and Palestine</td>
</tr>
<tr>
<td></td>
<td>Syria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yemen</td>
<td>Ministry of Water and Environment</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>projects</td>
<td>exist</td>
<td>exist</td>
<td>GW with SA and Oman</td>
</tr>
<tr>
<td>North Africa</td>
<td>Egypt</td>
<td>Disasters Unit/Prime Minister Office</td>
<td>none</td>
<td>project basis</td>
<td>none</td>
<td>project basis</td>
<td>exist</td>
<td>Nile basin/GW with Libya</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sudan</td>
<td>Ministry of Agriculture</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>exist</td>
<td>Nile basin/GW with Libya</td>
</tr>
<tr>
<td></td>
<td>Libya</td>
<td>Ministry of Water Resources</td>
<td>none</td>
<td>exist</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>exist</td>
<td>OSS/ GW with Sudan</td>
</tr>
<tr>
<td></td>
<td>Tunisia</td>
<td>Prime Minister & Ministry of Agriculture</td>
<td>exist</td>
<td>none</td>
<td>exist</td>
<td>exist</td>
<td>exist</td>
<td>SW with Algeria and OSS with Libya</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algeria</td>
<td>Ministry of Environment</td>
<td>none</td>
<td>exist</td>
<td>none</td>
<td>exist but not active</td>
<td>exist</td>
<td>OSS with Tunis and Morocco</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morocco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2- Expert Group Meeting drought management checklist
1.5 Assessment of Drought Management Knowledge and Practices and Identification of Critical Gaps

The response to drought, drought management and practices varies between countries. Some countries are well advanced and have a drought management system, while others still lack drought management strategy or policy. On the regional level, there are several initiatives by UN organizations, ICARDA and ACSAD to develop a regional strategy for drought management and to link it to climate change risk strategy.

Below is an assessment of the drought management knowledge and practices in some of the countries (Jordan, Syria, Yemen, Egypt, Tunisia, and Morocco) under this study. The collected information on countries drought management status from literature and EGM meeting are compiled and summarised in the table at the end of this section.

1- Jordan

Jordan is one of the more vulnerable countries to drought. This is due to a reliance on groundwater and generated runoff from rainfall as the main sources of water supply. Some of the drought indicators in Jordan include:

- Water supply shortages in the summer
- Dried springs (decreased discharges in 850 springs)
- Decrease of groundwater levels by 1 m/year on average over the last 30 years.
- Decrease in the amount runoff
- Change in agricultural patterns in the Jordan Valley and highlands due to drop in rainfall
- Increase of imported fruits and vegetables from Syria, Lebanon, and Egypt
- Jordan's southern highlands represent the country's poorest – mainly farmers and women where communities are severely affected by cumulative impacts from extensive weather related disasters, such as flash flood and drought 4

The government of Jordan requested the FAO’s technical assistance to help the country undertake a project to better understand drought and its management in Jordan, and to develop a framework for carrying out a national drought planning process. This project was authorized by the FAO in May 2005 under its Technical Cooperation Programme. One of the goals of the project was to create a National Steering Committee of relevant stakeholders to help oversee and lead the project. A National Project Coordinator (NPC) from the Ministry of Agriculture was first appointed to lead the project and assist in recruiting committee members. The NPC, a FAO representative, and an international drought consultant held meetings with as many Jordanian ministries, departments, and NGOs as time would permit. The members of the National Steering Committee included:

- Secretary General, Ministry of Agriculture, Chairman
- Hashemite University
- National Centre for Agricultural Research and Technology Transfer
- Meteorology Department
- Ministry of Water and Irrigation
- Ministry of Interior
- Ministry of Environment
- Royal Jordanian Geographic Centre

4 Jordan Rural Poverty Fact Sheet - International Fund for Agricultural Development, 2010
The Ministry of Environment then took the lead and created policies in cooperation with the United Nations Development Programme (UNDP) and the Global Environment Facility, a financial mechanism for United Nations (UN) conventions on environment. The policies also suggest amendments to Jordan's environmental protection laws to strengthen its compliance with three UN conventions on biodiversity, climate change and desertification.

The Ministry of Environment formed a new committee to be responsible for the development of a national strategy for drought. The committee was led by the Ministry of Environment and reported to the Minister of Environment. This committee is comprised of 20 members from governmental ministries and institutions, universities, and NGOs. The full list of members is listed in Annex 1. The committee meets every three months to discuss a work agenda developed by the Ministry of Environment.

The consultant met with some of the members from the national committee (listed in the index) as well as UNDP and FAO, and IUCN organizations to evaluate their programs on drought management in Jordan.

The ministry of environment is working on implementation of the three Rio conventions:

- National Strategy and Action Plan to Compact Desertification, 2006- under update
- National Policy on Climate Change, 2013
- National Strategy on Biodiversity

Under the desertification component, the immediate obligation from the United Nations Convention to Combat Desertification (UNCCD) is to prepare a national action plan to combat desertification. With support from UNDP, The Ministry of Environment developed a national strategy and action plan to combat desertification in 2006. The ministry is planning to update this strategy in the nearest future.

The NAP includes six major programmes that are mainly “project-based”. However, these programs and the proposed projects provide a framework for an action plan to combat desertification. Each program has several projects with justification, activity, implementing agencies and initial budget. The proposed programs are:

- Desertification information system (DIS),
- Drought prediction and Desertification control,
- Capacity building and institutional development,
- Restoration of degraded ecosystems of rangelands and forests,
- Watershed management, and

The Ministry of Agriculture, in cooperation with the FAO, implemented a project entitled, “Drought mitigation strategy in Jordan.” This project ended in mid-2007.7 A national strategy and action plan for drought management was prepared and final recommendations and conclusions were discussed in a national workshop. Recommendations included:

1. Establishing a high committee headed by the Prime Minister and membership of several ministries and institutions such as Royal Jordanian Geographical Center (RJGC), Meteorological Department, Research Centers, Governmental and NGOs.

2. Formulation of the following sub-committees: technical, follow-up and evaluation of risk committees with membership of the mentioned institutions to supervise whatever effects drought occurrence, establishing standards for declaring drought and writing reports for the high committee.

3. Training programs on drought issues is vital for the sustainability of the work. It is also important to have an independent budget and train local communities so that they can be involved in decision-making and drought mitigation.

4. Signing of MOU’s within different institutions in order to clarify duties and responsibilities of each party.

5. Training of Trainers (TOT) in order to clarify the concepts and the vision of drought issues.

The following gaps were identified in Jordan drought management system:

- Independent body or unit responsible for drought management
- Standard management approach
- Regional sharing of drought information
- Drought projection
- The Drought National Action Plan (NAP) is still a new document that requires an effective awareness campaign and a resource mobilization strategy. It can be considered as a framework for action at the country level. A precise reference was made to it in the National Agenda
- The link between desertification and poverty is missing
- Monitoring and early warning or monitoring systems
- Mitigation plan
- Impact assessment (link between desertification, and migration and conflicts).
- The Steering committee meets every 3 months. Members are absent frequently and the meeting’s agenda items are not met within a timely fashion
- The involved ministries and organizations do not include the actions stated in the NAP in their plans or projects. In each ministry, there is no unit specialized and responsible for drought issues, rather the responsibilities are scattered between various sections
- The ministry of environment’s role is limited to calling meetings and updating strategies and policies concerning drought. There is a need to expand this role in order to establish coordinate between various ministries so that the drought action plans are included in the ministries plans and projects

- The members in the steering committee changes frequently, which affects the follow up and understanding of the agreed upon issues
- The Meteorological department is not a member of the steering committee

2- Syria

Syria is a semi-arid country that has suffered from several drought events. The 1999-2001 drought was the worst in four decades, seriously affecting crop and livestock production in the Syria, which, in turn, had serious repercussions on the food security of a large segment of the population as incomes fell sharply, particularly among the rural small farmers and herders. For example, in 1999, drought played a role in forcing approximately 47,000 nomadic households (329,000 people) to liquidate their livestock assets, which was a primary source of long-term income. Therefore, many families in the rangelands eventually required food aid during the drought years. In addition, according to ESCWA, urban populations, particularly in the southern part of the Syria, suffer from water shortages due to decreases in the Euphrates River. This resulted in dry of irrigation canals and drop in hydro-powered generation.

Eventually, economic growth was affected as agricultural production fell sharply, reducing the contribution of agricultural income to GDP. Although the government made extensive efforts to reduce the effects of the drought, especially on herders, by providing extra resources, feed rations, water and veterinary supplies, they were inadequate given the drought’s scale and severity and the country’s limited resources.

Between 2004 and 2006, FAO worked with the government of Syria to develop an effective early warning system for drought in the Syrian rangelands. The project had the following objectives: training national staff in the collection, analysis, interpretation, and implementation of data in the Syrian Ministry of Agriculture and Agrarian Reform, and strengthening institutional capacity in drought early warning systems, with particular emphasis on pastoralists and agro-pastoralists of the Syrian Steppe and its margins. The Syrian project was completed in 2006. As a result, an early warning system office and a steering committee were organized; a series of drought indicators were identified.

The early warning systems were implemented for the collection, organization, and processing of drought monitoring data (physical and social data); monthly drought bulletins have been published.

produced regularly since 2005 in both English and Arabic; and the technical capacity to operate a
drought warning system in Syria was successfully developed.

The main gaps in Syrian drought management can be summarised as follows:

- Independent body or unit responsible on drought management
- Standard management approach
- Regional sharing on drought information
- Weak coordination between various ministries and organizations
- Mitigation plans are mainly for emergency and not updated regularly
- Monitoring and early warning system

3- Yemen

Yemen is highly vulnerable to drought. This is a serious concern as Yemen's economy largely depends on its rural natural resources. According to the Yemen Environment Authority, more than 75% of the population is rural-based and engages in farming and pastoralism, and is hence highly reliant on favourable climatic conditions for their livelihoods. Recently, Yemen suffered from increased drought frequency, increased temperatures, and changes in precipitation patterns leading to degradation of agricultural lands, soils and terraces.

For example, the 1990-1991 drought had a severe impact on the Yemeni economy and population. As agricultural production fell sharply, economic growth was affected by the reduction of agricultural income’s contribution to GDP. The agricultural sector registered significant yield losses, resulting in widespread farm losses and increased poverty in rural areas. The drought highlighted the vital role that adequate rainfall and water resources play in keeping Yemen’s economy profitable and sustainable, as Yemen has no perennial rivers, and depends on rainfall from water run-off and groundwater recharge. The drought had serious repercussions on the food security of a large segment of the population. According to the World Bank, a sizeable portion of the population remains economically vulnerable to falling into poverty due to drought, as the Yemeni agricultural sector provides employment for 58% of the population.

The responsibility of drought and climate change issues in Yemen belongs to the Ministry of Water and Environment and the Environment Protection Authority (EPA). Some of the international organizations such as UNDP, GEF, and IUCN have helped Yemen in developing a strategy on climate change and biodiversity. However, there are still no sustainable land management strategies to combat desertification and land degradation. The primary goal of the Yemen National Adaptation Program of Action (NAPA) is to identify priority measures to adapt to drought variability, and translate them into project based activities that can address Yemen’s urgent needs for adapting to the adverse impacts of drought. Some of the key elements of the process include adequate stakeholder representation in all phases of the process. The main weaknesses in Yemen related to drought management are as follows:

- Independent body or unit responsible on drought management
- Standard management approach
- Regional sharing on drought information
- Weak coordination between various ministries and organizations
- Mitigation plans are mainly for emergency and not updated regularly
- Monitoring and early warning system

14 Yemen National Adaptation Program of Action, Republic of Yemen Environment Protection Authority, 2009
4- Egypt
The responsibility of drought management is under the Disasters Risk Unit at the Office of the Prime Minister. Recently, the unit engaged in projects with UN organizations in climate change risk management. This program is currently ongoing with the participation of six UN agencies (FAO, UNDP/UNRC, UNESCO, IFDA, UNEP, and UNIDO) and six ministries/national institutions (Ministry of Foreign Affairs, Ministry of International Cooperation, Cabinet of Ministers, Egyptian Environmental Affairs Agency, Ministry of Agriculture and Land Reclamation, and Ministry of Water Resources and Irrigation). This program aims at helping Egypt align its climate risk management to the predicted threats the country faces. The Joint Program will include both mitigation and adaptation activities. Meanwhile, IFAD and FAO will work jointly in the development of stress tolerant crops, identification of optimal cropping pattern, optimization of the use of shrinking water resources and information dissemination in response to the climate change risks. The expected outputs include:

- Enhanced capacity to adapt to climate change
- Adaptation strategies and practices integrated into climate-sensitive development policies, plans and programs
- Pilot measures implemented and scaled up in support of adaptation

Another main project is, “Monitoring of Climate Change Risk Impacts of Sea Level Rise on Groundwater and Agriculture in the Nile Delta”. The main objective of the project is to develop a decision support tool for predicting and mitigating likely impacts of climate change on agricultural production and the environment along the coastal areas of the Nile Delta. The outputs are:

- Climate change impact monitoring (for soil and groundwater) sites identified, observation wells installed and geo-referenced
- Likely impacts of SLR on groundwater table, and soil and groundwater
- Action-oriented information systems for predicting likely impacts and adaptation measures of climate change along the coastal areas of the Nile Delta.

The main gaps in Egyptian drought management can be summarised as follows:

- Independent body or unit responsible on drought management
- Standard management approach
- Regional sharing on drought information
- Weak coordination between various ministries and organizations
- Mitigation plans are mainly for emergency and not updated regularly
- Monitoring and early warning system

As shown above Egypt lacks national drought management strategy and action plan, and all drought management actions are on project basis. Egypt requires assistance in developing a drought management system, drought projection, development of monitoring and early warning systems and adoption of standard approaches to drought management.

5- Tunisia
In Tunisia, the Ministry of Agriculture and the Ministry of Environment are responsible for drought issues. There has been a drought management system to reduce the effects of the drought since 1987. The system was adopted when drought events occurred during 1987-1989, 1993-1995 and 2000-2002. During 1999, Tunisia published the first guideline on drought management.
entitled “Guide Pratique de la Gestion de la Sécheresse en Tunisie.”15 The guideline was elaborated by referring to the drought management system and by analysing the data and information recorded during the drought periods of 1987-1989 and 1993-1995. This guideline consists of methodological approaches, identification of principal drought indices, description of drought preparedness and management processes, and maps of intervening parties. The drought management system in Tunisia has 3 major successive steps:

1. Drought Announcement: Referring to meteorological, hydrological and agricultural indicators as observed in the different regions affected by drought and transmitted by the agricultural, economic, and hydrologic districts relevant to the Ministry of Agriculture, Environment and Water Resources (MARH). A drought announcement is established by means of a circumstance memorandum.
2. Warning: This announcement, qualified as warning note, is transmitted to the MARH Minister, who proposes a scheduled operations plan to the National Commission (committee), which is composed of decision makers and beneficiaries.
3. Action implementation: The National Commission is in charge of supervision of the execution of all the operation actions, in strong collaboration with the regional and specialized committees. The National Commission also supervises all operations when the drought is over.

According to the published studies and information on the Tunisian drought management system, the strengths and weaknesses of Tunisia drought management system can be summarised as follows:

Strengths
- A high Presidential interest and support is devoted to the drought mitigation system in Tunisia.
- The approach based on three drought management phases (before, during and after drought), is a very important strategy and relevant to the basic elements of drought management theory.
- Capital productive sharing and preservation.
- Sustainability of farmers' incomes.
- Integrated and optimized water resources management in Tunisia, especially during drought, depending on its intensity and duration.
- Water saving as a national policy

Weaknesses
- Independent body or unit responsible for drought management
- Standard management approach
- Regional sharing on drought information
- Drought projection
- The financial incidences are supported by the State budget because of the absence of insurance systems linked to drought, and private sector contribution is limited.
- Updating the drought mitigation from 2003, which is based on simple note-taking and observation findings, without any wide-spaying evaluation study. The latter would be realized by an in-process study “The climatic changes and their impacts on the agricultural sector and the ecosystems”.

The deficiency in the relations between the different institutions that provide information and data about water, which should be resolved by the establishment of the Unified Water Resources National Information System in the near future.

6- Morocco

Morocco suffered from several droughts that sharply affected the production of basic crops such as cereal. For example, as a result of drought in 2001, approximately 1 million ha of cropland was affected, which caused the country to import approximately 5 million tons of wheat and allocate more than $500 million for their cereal imports. In addition, drought conditions in Morocco can lead to food shortages and rural malnutrition, herds perishing or being slaughtered for lack of forage, farmers temporarily abandoning their land and flocking to the cities, and increased wind erosion and desertification.

At the national level, the government of Morocco established a National Drought Observatory (NDO) in 2001 with the goal of collecting, analysing, and delivering drought-related information, which includes assessing the frequency, severity, and extent of droughts, as well as their various effects on crops, livestock, the environment, and living conditions of rural populations using objective, measurable scientific criteria.

The NDO was placed within the Institute Agronomique et Veterinaire Hassan II, an academic institution, to facilitate interdisciplinary collaboration and give the centre a degree of neutrality in regard to policy decisions. Over time, the mandate of the NDO has broadened into playing a central role in drought planning activities in the country.

The main gaps in Morocco’s drought management systems can be summarised as follows:

- Independent body or unit responsible on drought management
- Standard management approach
- Regional sharing on drought information
- Drought projection
- Weak coordination between various ministries and organizations
- In each ministry, there is no unit specialized and responsible on drought issues, rather the responsibilities are scattered between various sections.
- Mitigation plans are mainly for emergency and not updated regularly
- Monitoring early warning system

<table>
<thead>
<tr>
<th>Region</th>
<th>Country</th>
<th>Responsible Organization</th>
<th>Drought Management Gaps Assessment</th>
</tr>
</thead>
</table>
| West Asia | Jordan | Ministry of Environment leading the National Steering Committee from ministries, NGO's, and Universities. | FAO and UNDP helped the country to develop drought management strategy and action plan in 2006. The ministry of environment is working on updating the drought strategy in nearest future. Jordan needs help in the following areas:
- Drought projection
- Adoption of standard approach
- Drought monitoring and early warning systems
- Preparedness and mitigation actions
- Impact assessment

UNDP, and GEF funded a project to identify priority research topics in combating desertification, study is ready in 2013.

18 Policy Oriented National Priority Research Topics in Climate Change, Biodiversity, and Combating Desertification, UNDP, gef (2013-2020) |
| Lebanon | Ministry of Agriculture
Ministry of Energy and Water | Currently, there is no national drought management strategy. There are only drought management actions on a project basis. ACSAD will help in developing drought strategy. Lebanon needs help in the following areas:
- Drought projection
- National drought strategy and action plan
- Adoption of standard approach
- Drought monitoring and early warning systems
- Preparedness and mitigation action
- Emergency response and recovery measures
- Impact assessment |
| Syria | Ministry of Agriculture | There is no national drought strategy, drought actions on project basis. Since 2009, SDC supported the FAO project to reduce the vulnerability to drought in Syria through extended outreach of the national drought early warning system. The System focuses on the low rainfall |
zones of the Badia and the marginal area. Monthly drought bulletins have been produced regularly since 2005 in both English and Arabic. Syria needs help in the following areas:

- Drought projection
- National drought strategy and action plan
- Adoption of standard approach
- Drought monitoring and early warning systems
- Preparedness and mitigation action
- Emergency response and recovery measures
- Impact assessment

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution</th>
<th>Help Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yemen</td>
<td>Ministry of Water and Environment</td>
<td>There are strategies for biodiversity and for Climate Change but not for combating desertification. There are drought mitigation plan and drought management actions on project basis. Yemen needs help in the following areas:</td>
</tr>
<tr>
<td>North Africa</td>
<td>Disaster Unit at Prime Minister Office</td>
<td>The UN organizations helped in climate change risk management and impact assessment on agriculture in the Delta area. There is no national strategy for drought management and action planning. Drought management actions are on a local scale and on a project basis. ACSAD is planning to help in developing strategy. Egypt needs help in the following areas:</td>
</tr>
<tr>
<td>Egypt</td>
<td>ACSAD</td>
<td></td>
</tr>
</tbody>
</table>
Sudan

Ministry of Agriculture

ACSAD and FAO are helping in climate change risk management and impact on agriculture. There is no national strategy for a drought management and action plan. Drought management actions are on a local scale and on a project basis. Sudan needs help in the following areas:

- Drought projection
- National drought strategy and action plan
- Adoption of standard approach
- Drought monitoring and early warning systems
- Preparedness and mitigation action
- Emergency response and recovery measures
- Impact assessment

Libya

Ministry of Water Resources

The ACSAD and FAO are helping in climate change risk management and impact on agriculture. There is no national strategy for drought management and action plan. Drought management actions are on local scale and on project basis. Libya needs help in the following areas:

- Drought projection
- National drought strategy and action plan
- Adoption of standard approach
- Drought monitoring and early warning systems
- Preparedness and mitigation action
- Emergency response and recovery measures
- Impact assessment

Tunisia

Prime Minster Office, Ministry of Environment and Ministry of Agriculture leading the

There is drought management and action plan since 1987. There is management system, which include database, and dissemination system. Tunisia needs help in the following areas:
<table>
<thead>
<tr>
<th>Country</th>
<th>Entity</th>
<th>Needs Help in the Following Areas</th>
</tr>
</thead>
</table>
| Algeria | Ministry of Environment | - Drought projection
- National drought strategy and action plan
- Adoption of standard approach
- Drought monitoring and early warning systems
- Preparedness and mitigation action
- Emergency response and recovery measures
- Impact assessment |
| Morocco | National Drought Observatory | - Drought projection
- Adoption of standard approach
- Drought monitoring and early warning systems
- Preparedness and mitigation action
- Emergency response and recovery measures
- Impact assessment |

Table 3- Gaps in drought management by country
2. Vulnerability to Drought and Review of Standard Approaches in Drought Management

Specific definitions of drought may vary across sectors and regions. Drought generally originates from a deficiency of precipitation over an extended period of time, resulting in a water shortage for some activity, group, or environmental sector. More specifically, Wilhite and Glantz describe four types of droughts:

Meteorological drought: refers to a deficiency of precipitation, as compared to average conditions, over an extended period of time.

Agricultural drought: is defined by a reduction in soil moisture availability below the optimal level required by a crop during each different growth stage, resulting in impaired growth and reduced yields.

Hydrological drought: results when precipitation deficiencies begin to reduce the availability of natural and artificial surface and subsurface water resources. It occurs when there is a substantial deficit in surface runoff below normal conditions or when there is a depletion of ground water recharge.

Socioeconomic drought: occurs when human activities are affected by reduced precipitation and related water availability. This form of drought associates human activities with elements of meteorological, agricultural, and hydrological drought.

The following main indicators reflect impacts from the three types of drought. Figure 4 shows the relation between various indicators and table 3 shows the drought indicators:

Table 4: List of main drought indicators

<table>
<thead>
<tr>
<th>Shortage in Water Resources</th>
<th>Increase in Diseases</th>
<th>Agricultural Losses</th>
<th>Livestock Losses</th>
<th>Drop in Hydropower</th>
<th>Soil Erosion</th>
<th>Drop in income</th>
<th>Stress on governments budgets</th>
<th>Society Instability</th>
</tr>
</thead>
</table>

2.1 Drought Impacts and Severity

The impacts of drought are manifold and have social, environmental, and economic consequences. Africa and Asia tend to have similar impacts, but the impacts that occur in Africa tend to be more severe. The figures below show the areas in which each continent is most severely impacted by drought and also show the comparison of impacts between Africa and Asia.

Figure 4 - Relation between various indicators
Based on information from the United Nations Development Program (UNDP), the major areas of drought impact in African and Asian regions are a decrease in crop yields, and thus a decline in food security; shortages in water suitable for human use; declining health; economic losses; a decrease in livestock; famine; migration and displacement; a decrease in water available for business and industry (e.g., hydropower); increases in community and national level conflicts and crimes, including violence against women in the household; fires; and forced sale...
of land and household assets. The decrease in water for human use refers to the water needed for such things as cooking, drinking, and cleaning and the decline in human health can occur because of unsafe drinking water and malnutrition.

The top four areas most affect by drought impacts in Africa are decreases in water for human use, increases in food insecurity given the decline in crop yields, a decline in human health, and livestock losses. Similarly, Asia is most negatively affected by the decreases of water for human use and decreases in crop yields and food security, but is more greatly impacted in the economic sector and water use for business and industry compared to Africa.

Given this information, when developing a drought risk management plan it is important to address all areas of drought impact, but to focus on areas of food insecurity, decline in crop yields and livestock, and the amount of water available for human use. By focusing on these areas, other impacted areas such as the economy and civil unrest should consequently be improved given the interconnectivity of these sectors.

2.2 Vulnerability to Drought Impacts

A number of factors can contribute to a region’s vulnerability to drought impacts. Many of these vulnerabilities stem from problems associated with poverty. There are four types of drought: meteorological, agricultural, socioeconomic and hydrological. When there is a meteorological drought, or lack of water availability, there needs to be enough economic security for communities to withstand agricultural, socioeconomic and hydrological droughts as well.

In many circumstances, poor health, such as HIV and AIDS, limits household productivity and leads to vulnerability to disasters such as drought. Other factors that increase a community’s vulnerability to drought in Asia and Africa include social inequalities; damaging cultural practices such as overgrazing; environmental degradation; poor governance systems; climate change; conflict; population increases causing stress on available natural resources; ineffective water resources management; societal inequalities and economic divides; and lack of access to information by communities concerning how to successfully combat drought.

Out of these contributing causes of drought impact, both Africa and Asia rank environmental degradation, poor governance systems, and ineffective water resource management as the highest causes of vulnerability. Land degradation, mainly due to human activities, has become a problem all over the world, however in the arid areas of North Africa and West Asia, the issue is even more prominent. Overgrazing and unsustainable practices have allowed soil surfaces to become exposed to wind and water erosion, sand movement, salinization of irrigated lands, and waterlogging. Wind erosion is most likely a product of the decrease in or complete lack of steppe and perennials on the landscape. Water erosion, on the other hand, typically occurs near rivers that have been deeply incised or in areas that were cultivated after experiencing marginal rainfall. Examples of these causes of erosion in Syria are the Orontes near Hama and the regions south of Lake Jabboul, respectively. In many cases overgrazing of rangelands is permanent, resulting in soil that can no longer produce crops and vegetation. Land degradation also has a direct negative effect on groundwater-irrigated systems and results in aquifer depletion and contamination. This degradation of land puts extra pressure current water resources as water from reserves and other sources must be allocated accordingly to mitigate this problem.

CGIAR CRP1.1 North Africa and West Asia, Regional Inception Workshop, Draft Report Pg. 28

CGIAR (2003) CRP1.1 North Africa and West Asia, Regional Inception Workshop, Draft Report Pg. 28
Climate change and population increases also rank as high causes of vulnerability to drought in these regions. Oweis and Hachum assert that the annual population increase is approximately 3.6%. At this rate, the population is projected to more than double by the year 2020, approaching 930 million people.25

According to Black, Brayshaw and Rambeau, the Middle East is facing climate change due to anthropogenic changes, which in turn is creating a major water shortage and lack of precipitation. This lack of precipitation has a significant negative impact on society in the Middle East.26 In their study, Black and her colleagues create a climate model which suggests a decreased winter rainfall in southern Europe and the Middle East because of an anticipated pole ward shift in the North Atlantic storm.27 According to a study by UNDP, government officials in Africa and Asia rank climate change as the primary root cause to drought impacts. Climate change is a global issue and cannot be attributed to any one country. This being said, it is crucial that drought risk management plans address making changes in human behaviour that are sustainable and environmentally friendly. UNDP also asserts that it is a common held belief that drought is inevitable, when this may in fact not be the case. By focusing on the root causes of drought, although complex, the West Asia and North Africa region, as well as other countries around the world, can adopt a more proactive approach to drought mitigation.

The table below summarizes the areas in which the Africa and Asia region is most vulnerable to drought impacts:

<table>
<thead>
<tr>
<th>Vulnerabilities to Drought Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental degradation</td>
</tr>
<tr>
<td>Ineffective water resource management</td>
</tr>
<tr>
<td>Poor governance</td>
</tr>
<tr>
<td>Climate change</td>
</tr>
<tr>
<td>Damaging cultural practices</td>
</tr>
<tr>
<td>Conflict</td>
</tr>
<tr>
<td>Poor health</td>
</tr>
<tr>
<td>Population increases</td>
</tr>
<tr>
<td>Social inequalities and economic divides</td>
</tr>
<tr>
<td>Lack of access to information by communities concerning how to successfully combat drought</td>
</tr>
</tbody>
</table>

\textbf{Table 5- Vulnerabilities to drought impacts}

\section*{2.2 Barriers in Combating Vulnerabilities to Drought Impacts}

\textit{1. Lack of political will}

It is important to understand not only the factors that create drought risk, but the factors that are prohibiting the mitigation of these drought impacts. A major barrier in Africa and Asia in addressing the causes of drought impacts is a lack of political will. This lack of political will is often due to the complex nature of drought and the many aspects that need to be considered when addressing it. It also sometimes takes a while for the effects of drought to become apparent. Furthermore, the severity of the issue of drought often evolves very gradually. The

25 Oweis, T. & Hachum, A (2003). Improving Water Productivity in the Dry Areas of West Asia and North Africa. Water Productivity in Agriculture: Limits and Opportunities for Improvement. Pg 182

27 Ibid.
combination of these factors often results in a lack of political will to address the issues associated with drought. Another concern is that there is no direct relationship between the timely and precise prediction of drought through scientific data and the political will to act, implement mitigation, and provide resources for loss prevention. At times governments will allocate food aid to community members in order to increase governmental popularity, even when there is no apparent threat of drought. This calls into question whether or not drought resources are sometimes being used as a means to bolster political standing instead of providing relief to the public.

2. Other priorities
Along the same lines as the lack of political will are the other priorities that take precedence over drought related issues. Many times suitable interventions are not implemented because other political issues are at the forefront of national attention.

3. Technical capacity at local and national levels
In Africa and Asia there is a lack of national and local capacity, but the technological inefficiency is greater in Africa and at the local level. A major reason for this is that there is a lack of local awareness, another barrier that will be further discussed below.

4. Funding
Funding is a severe barrier in combating drought in Africa in particular. Africa is, however, receiving funding from public and private sectors, the government, and private donors to address the need for drought-induced food insecurity. This raises the question of whether the funds allocated for drought are being used efficiently and effectively, and whether these funds are allocated towards proactive mitigation and prevention of drought related-disasters and not just reactive measures.

5. Local awareness
Often, local knowledge and practices of drought risk management are undermined, leading to capacity that is not developed to its full potential. Lack of local awareness also leads to increased drought impacts and the prevention of strategies that effectively reduce drought risk.

2.3 Vulnerable Populations and Economic Sectors to Consider

Below are the populations and economic sectors vulnerable to drought as proposed by UNCCD, FAO and WMO at the High Level Meeting on National Drought Policy (HMNDP) in Geneva, March 2013.

<table>
<thead>
<tr>
<th>Vulnerable Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
</tr>
<tr>
<td>Children</td>
</tr>
<tr>
<td>The Elderly</td>
</tr>
<tr>
<td>Invalid, Infirm and Sick</td>
</tr>
<tr>
<td>Landless</td>
</tr>
<tr>
<td>Farmers</td>
</tr>
<tr>
<td>Pastoralists</td>
</tr>
<tr>
<td>Marginalized Communities</td>
</tr>
<tr>
<td>Indigenous communities and Populations</td>
</tr>
</tbody>
</table>

Table 6: Vulnerable populations to drought

<table>
<thead>
<tr>
<th>Sector</th>
<th>Impact</th>
<th>Potential Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain-fed agricultural production</td>
<td>Reduced or no crop yields; increase in extreme events and accelerating trends on the productivity of rain-fed agriculture</td>
<td>Imports, sowing different crops, improved agronomic practices (i.e. no tillage), no sowing at all</td>
</tr>
<tr>
<td>Irrigated agricultural production</td>
<td>Reduced water quantity and quality; reduced or no yields</td>
<td>Water rationing, water allocation review, sowing dry-land crops, introduction of water banks for temporary transfer of water rights</td>
</tr>
<tr>
<td>Livestock production</td>
<td>Livestock weight loss, mortality, destocking, increase in incidence of diseases, lower fertility and reproduction rates</td>
<td>Destocking, feed distribution, cattle parking/relocation of herds, nomadic migration, use of special reserved areas (stock routes and stock reserves)</td>
</tr>
<tr>
<td>Water</td>
<td>Degraded water quality (Salinity, BOD/COD), surface water shortages, overdrawing and depletion of groundwater</td>
<td>Ex ante identification of supplemental and alternative sources of water, use of reserve sources of groundwater, technical optimization of water resources, water laws and policies for special circumstances, establish a water security plan for all rural and urban areas with respect to climate change, prediction of future water use to determine zoning, development of critical thresholds</td>
</tr>
<tr>
<td>Environment</td>
<td>Ecosystem degradation, loss of biodiversity, species migration and extinction, landscape changes and wind erosion, increased risk of wildfires, fisheries impacts</td>
<td>Maintenance of environmental flows</td>
</tr>
<tr>
<td>Transportation</td>
<td>Reduced transportation and navigation on rivers and lakes</td>
<td>Preparation of alternate transportation plans using rail and roadways</td>
</tr>
<tr>
<td>Health</td>
<td>Morbidity and mortality increases, increased incidence of suicides, degradation of sanitation,</td>
<td>Food supplements, stockpiling food, more robust social safety nets, improved access to mental and physical</td>
</tr>
<tr>
<td>Sector</td>
<td>Vulnerabilities</td>
<td>Mitigation Measures</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Tourism and recreation</td>
<td>Decreasing levels of nutrition, health care, access to counselling services</td>
<td>Improved management of water reservoirs, reallocation of water supplies between user sectors</td>
</tr>
<tr>
<td>Energy</td>
<td>Loss of recreation areas, decline of tourism revenue, reduction in taxes collected</td>
<td>Decreased hydropower production, brownouts and blackouts, increased demand, destruction of transmission lines, Energy restrictions, improvements in efficiency, alternative energy supplies, diversification of energy sources</td>
</tr>
<tr>
<td>Society</td>
<td>Migration and loss of community, increased conflicts, increased theft and crime, migration of population of farm/rural areas to urban areas</td>
<td>Social protection and crash-transfer programmes, diversification of rural livelihoods, employment programs and schemes, provision of counselling services</td>
</tr>
<tr>
<td>Education</td>
<td>School dropout rates, lower school enrolment</td>
<td>Targeted social protection, mid-day meal schemes to prevent dropouts</td>
</tr>
<tr>
<td>Cost of emergency response programs</td>
<td>Amount spent on relief and response</td>
<td>Insurance schemes, better targeting of response programs, improved monitoring of impact sectors to identify when measures should be implemented to mitigate impacts</td>
</tr>
<tr>
<td>Secondary and tertiary impacts on economic productivity</td>
<td>Loss of income and productivity, opportunity costs, higher personal debt levels</td>
<td>Employment guarantee schemes and loan waivers</td>
</tr>
</tbody>
</table>

Table 7- Vulnerable economic sectors to drought
2.4 Standard Approaches, Vulnerability and Application

The standard approaches in drought management include two main approaches:

- Reactive Approach
- Proactive Approach

Reactive Approach:
This approach is based on the implementation of measures and actions after a drought event has started and is perceived. This approach is taken in emergency situations and often results in inefficient technical and economic solutions. This is because actions are taken with little time to evaluate optimal actions and stakeholder participation is very limited.

Proactive Approach:
This approach includes measures designed in advance, with appropriate planning tools and stakeholder participation. The proactive approach is based both on short term and long term measures and includes monitoring systems for a timely warning of drought conditions. It can be considered an approach to "manage risk". A proactive approach consists of planning the necessary measures to prevent or minimize drought impacts in advance. Such an approach includes preparedness of planning tools which enable the consequences of a possible water emergency to be avoided or reduced, as well as the implementation of such plans when a drought occurs.

The proactive approach foresees a continuous monitoring of hydro-meteorological variables and of the status of water reserves in order to identify possible water crisis situations and to apply the necessary measures before a real water emergency occurs. Nevertheless, if it is not possible to avoid a water crisis that appears as a natural public calamity (after a government declaration), the Drought Contingency Plan is implemented until the establishment of normal conditions. It is evident that a proactive approach, even if more complex, is more efficient than the traditional approach, since it allows drought mitigation measures (both long term and short term) to be defined in advance, improving the quality of the interventions.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Characteristics</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive</td>
<td>Based on the implementation of actions after a drought event has occurred and is perceived. Taken in emergency situations but not based on a contingency plan.</td>
<td>Often results in inefficient technical and economic solutions since actions are taken with little time for evaluating optimal actions. Limited stakeholder participation.</td>
</tr>
<tr>
<td>Proactive</td>
<td>Actions designed in advance, with appropriate planning tools. Includes stakeholder participation. Provides both short and long term measures and includes early warning systems. Includes a contingency plan for emergency situations.</td>
<td>The ineffective coordination and cooperation between institutions and the lack of policy to support and revise the proactive plan may lead to an inadequate planning.</td>
</tr>
</tbody>
</table>

Table 8: Standard Approaches in drought management
The implementation of a proactive approach implies drafting plans in which the mitigation measures are clearly defined together with the instructions for their implementation. The proactive approach is recommended for drought management and will reduce the drought impacts and risks. This implies the following standard steps below:

- Establish a specialized unit or section which is responsible for drought management. It can be within one of the key ministries such as the Ministry of Agriculture, Environment, or Water.
- Establish a Steering Committee from relevant ministries, NGOs, Universities, Research Institutes, Farmers Associations, and private sector. The committee needs to have competences at different levels of implementation of policy and expert analysis. It might be helpful to have two committees: a policy committee and a technical committee.
- Classify and characterize the geographical area into drought zones according to vulnerability (High, Medium, and Low). Drought characterization should also include a previous diagnosis of the sources, scales and reliability of the data used in the analysis. The correct drought characterization provides decision makers with a measurement of the abnormality of historical weather variability and its effects on a region. A methodological component is also essential for stakeholders.
- Develop a GIS based database to house maps and drought information
- Collect meteorological, hydrological, biological and socioeconomic data within the geographic zones.
- Collect and share transboundary and regional meteorological data through direct regional cooperation programs or WMO joint programs or database.
- Project potential future droughts based on collected meteorological data using climate change projection models.
- Analyze the hydrological data and identify the impact of changes in rainfall and temperature on the each zone based on the drought projection.
- Develop a monitoring system regular monitoring at fixed stations in each zone. Drought monitoring has the objective to warn about a possible incoming drought, providing adequate information for an objective drought declaration and for avoiding severe water shortages.
- Update and modify the drought management plan based on new information on regular basis.
- Develop an early warning system that incorporates the drought projections in the classified zones and alerts the various stockholders on regular basis. The warning system can be categorized into 4 mains stages: alert, alarm, emergency, and recovery.
- Measure the impact of droughts in each zone and estimate the losses in each of the above listed indicators

Drought management depends on indices to detect drought conditions, and thresholds to activate drought responses. Indices and thresholds are important to detect the onset of drought conditions, to monitor and measure drought events, and to quantify the hazard. The appropriate drought index is selected according to the type of drought. Indices may be considered as general or specific depending on the utility for which they have been devised. It is understood that this distinction is difficult. Some of the indices, however, are more appropriate for monitoring and some for the analysis of historical drought events.

The most commonly applied drought indices include the Standardized Precipitation Index (SPI), the Palmer (Drought Severity Index PDSI) and deciles, due to their simplicity. It was concluded that the easiest index to use for monitoring purposes is the SPI, which is based on a single meteorological parameter (precipitation) and the RDI that also includes evapotranspiration. Recent advances in remote sensing provide products that have a large potential as drought indices. The NDVI is widely used for monitoring and forecasting crop production world-wide and by agricultural insurance companies.
2.5 Impact of Standard Approaches on Drought Management Effectiveness

The adoption of standard approaches (SA) in drought management will minimize drought risk and impacts and will facilitate the decision making process. This can be seen in several areas:

- SA facilitates the step-by-step execution of drought management plans, which minimizes the risk of missing any part in the management process.
- SA minimizes errors and makes the projections more efficient.
- SA helps to improve the quality of data and analysis procedures, which reflects on the projections and actions to be implemented.
- Standard approaches increase readiness to face drought in a short period of time, which will reduce drought impacts.
- SA fosters implementation of standardized categories of alerts for different types of events. It also identifies the situations in which alerts should be sent, which prepares stakeholders for action.
- SAs provide guidelines in a comprehensive manner. They provide a standard method for receiving reports and information about drought situations from the concerned Ministries/Departments/Agencies and State Governments and thereafter issuing alert messages to all concerned. This will help in the case that there is a change of staff or committee members so all will follow the same procedures.
- SAs also standardize the information requirements for various event categories. This will facilitate the communication between various ministries.
- SAs establish protocols for alerting decision makers and the Cabinet Secretariat. They also outline procedures for receiving and analyzing reports and issuing alerts through various modes to the concerned authorities.
- SAs are designed to specify actions that are required to be taken for reporting on drought events.
- SAs specify duties and responsibilities for the personnel working on drought management.

Using standard approaches in developed countries like Europe and the United States shows that the impact and risk from such events are much less than the countries that do not use standard approaches. This is clear in all disaster events in general, and droughts in particular.
3. Effective Drought Monitoring and Early Warning Systems in the Region

3.1 The Importance of and Need for Monitoring and Early Warning Systems

Early warning is the provision of timely and effective information, through identified institutions, that allow individuals at risk of a disaster to take action to avoid or reduce their risk and prepare for effective response.

As mentioned before, most countries in North Africa and West Asia suffered and will suffer from the impacts of drought on human life, livestock, agriculture, water resources, and environment. Furthermore, published results from climate change models indicate that this region will continue to face serious droughts in the future.

The IPCC Fourth Assessment Report synthesized the simulation results from 21 models. Results indicated that West Asia and North Africa are likely to see a 3.5-7 centigrade temperature increase in the last 20 years of this century compared to the temperature of the last 20 years of the 20th century (Fig. 2, top row). In terms of precipitation, most of this region probably has had less rain (up to 50% less) in the last 20 years of this century compared to that of the precipitation in 1980-1999. 29

The IPCC also depicts the global drought scenarios for 2046-2065 and 2081-2100. Standard deviation is used for the comparison, and it is likely that there will be more Consecutive Dry Days (CDD) and higher negative soil moisture anomalies (i.e. soil moisture deficit) in West Asia and North Africa in the latter half of the 21st century. 30

According to the FAO, future drought leads to the following: 31

- A decrease in water availability of up to 40 mm per year by 2080-99
- An increase in the number of dry days in most portions of the region
- A decrease in the number of frost days and an increase in heat waves in more continental areas
- A decrease in growing seasons
- A 3ºC rise in temperature could cause maize yields in North Africa to fall by 15-25% and crop yields in West Asia to fall by 25-35%
- Less soil moisture in arid lands will exacerbate degraded lands even further
- The mean cost of climate change in the region, especially the Middle East, is predicted to result in about a 2.5% and 1.9% loss in gross domestic product (GDP), respectively, compared to a world without climate change

In light of the above projections and considering the current trend and future projections for drought situation in West Asia and North Africa, drought early warning systems at the global, regional and national level are necessary because these systems provide the timely and reliable information necessary to make decisions regarding the management of water and other natural resources. Preparedness and early warning are key factors for improved operational management and help to reduce social vulnerability to drought by:

• Establishing a drought plan
• Identifying alert mechanisms
• Establishing the links between drought, water and development policies

Scientific advances in seasonal to inter-annual climate forecasts and monitoring systems create the possibility to implement early warning systems in many regions, especially where the data and information systems are in place.

3.2 Drought Early Warning Systems in Developed Countries

Effective drought monitoring and early warning systems are an integral part of efforts worldwide to improve drought preparedness. Timely and reliable data and information is the cornerstone of effective and proactive drought planning. However, the UN/ISDR recently completed a global survey and found that early warning systems for drought are more complex than those for other hydro-meteorological hazards and are, consequently, less developed globally. \(^{32}\) Monitoring drought presents some unique challenges because of drought’s distinctive characteristics (i.e., low onset, non-structural impacts, and large spatial extent). Therefore, choosing the appropriate indicators of drought and formulating those measurements into an effective early warning system can be challenging.

The drought early warning and monitor system developed by the Drought Management Centre for South-Eastern Europe (DMCSEE) and the European Drought Observatory (EDO) by the European Commission Joint Research Centre uses a combined drought indicator, which is based on SPI, soil moisture and FAPAR. A map of droughts in Europe for the 2\(^{nd}\) ten-day period of March 2013 is presented in Figure 7. The color scales represent different drought scenarios: \textit{Watch} means a relevant precipitation shortage is observed; \textit{Warning} means this precipitation translates into a soil moisture anomaly; and \textit{Alert} signifies when these two conditions are accompanied by an anomaly in the vegetation condition.

Figure 7 - The European drought monitoring map

In the US, a partnership emerged in 1999 between the National Oceanic and Atmospheric Administration (NOAA), the U.S. Department of Agriculture (USDA), and the National Drought Mitigation Center (NDMC) at the University of Nebraska-Lincoln with the goal of improving the coordination and development of new drought monitoring tools. The U.S. Drought Monitor (USDM) became an operational product on August 18, 1999. The USDM is maintained on the website of the NDMC (http://droughtmonitor.unl.edu/). This website has evolved into a web-based portal for drought and water supply monitoring. Figure 8 shows a drought monitoring map for the US released on Mar 26, 2013.
In China, the National Climate Center is in charge of the monitoring, diagnosing and predicting the timing of the droughts. Figure 9 shows a map on the website, which depicts the precipitation anomalies percentage national map on Apr 2nd, 2013. For the widely used indicators, such as SPI and PDSI, there is no related information found on the website.

Another example is the Africa drought monitoring system shown in Figure 10. It shows changes in rainfall and temperature on regular basis and in short durations. As we know, a single variable is not enough for monitoring drought. It is suggested that drought indicators should be introduced for better monitoring.
Figure 9 - China’s drought monitoring map.

Figure 10 - Africa drought monitoring map.
3.2 Impact of Application of Early Warning Systems in the Selected Countries

The impact of early warning systems is highly significant in saving lives, livestock, crops and the environment. In Europe, it is estimated that hydro-meteorological information and early warning systems saved several hundred lives per year, between 460 million and 2.7 billion Euros of disaster asset losses per year, and creates 3.4-34 billion additional benefits per year through the optimization of economic production in weather-sensitive sectors (agriculture, energy etc.).

In North Africa and West Asia, the published surveys and studies on drought, indicated that most countries in the region do not have well-functioning drought monitoring systems that would allow them to take timely action to mitigate the effects of drought. Even though the meteorological networks in most countries are adequate and well-equipped, they are poorly prepared to function effectively as a drought early warning system because of inadequate analytical tools required for drought monitoring, unsuitable information products, and insufficient data sharing.

However, there is an example from Morocco where they established a National Drought Observatory (NDO) in 2001 with the goal of collecting, analysing, and delivering drought-related information in a timely manner, which includes assessing the frequency severity of drought. Even though great strides have been made in these efforts in North Africa and West Asia, in general, there are still many challenges to overcome in developing effective drought monitoring. Some of the most pressing challenges include:

- Enhancing data quality and collection network densities,
- Reducing the cost and increasing the sharing of data,
- Making early warning information more accurate and user friendly,
- Integrating physical and social drought indicators into systematic and comprehensive monitoring and early warning systems,
- Providing support to create and maintain systems.

3.3 Assessment of Required Resources and Capacity for Drought Monitoring

The required resources for drought monitoring include national resources and international support. On the national level, drought monitoring requires a functional observation network. The spatial and temporal variability of rainfall is very high in the semi-arid and arid areas prone to drought. It is recommended to establish an observational network as follows:

- Automatic weather station
- Automatic rain-gauge
- Ground water table observations
- Surface water flow measurements
- Regular updated satellite data

The rainfall data not only needs to be accurately measured but it must also be measured and transmitted on a real-time basis. Telemetric rain gauges are useful in recording real time rainfall data, which enables near time analysis. The availability of real/near real time rainfall/weather data makes it possible to develop early warning systems.

The digital data obtained from telemetric rain gauges enables not only efficient database management but also enables development of operational early warning systems. Automatic weather stations and rain gauges need to be distributed at appropriate places to enable micro level analysis and forecasting.

The observation network can be established from the existing stations which belong to various ministries or meteorological departments in each country. In order to get proper monitoring, the observational network would require a reasonably dense observational network. It also requires a skilled and operational maintenance staff to run the network.

Drought monitoring indicators based on climate data and remote sensing products are at present the best available tools to monitor drought over large regions and time periods. The two most widely used indicators are the Standardized Precipitation Index (SPI) and the Palmer Drought Severity Index (PDSI). In addition, the surface water supply index (SWSI), the standardized water indexes (SWI), the field monitoring and remote sensing systems and the socioeconomic indicators. These indicators should be used in an integrative way to have a better idea of drought severity. Below is a list of the basic indicators and the measurement means.

<table>
<thead>
<tr>
<th>Monitoring Indicators</th>
<th>Monitoring Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>Rainfall Gauging Stations</td>
</tr>
<tr>
<td>Water supplies (domestic, livestock)</td>
<td>Household Survey</td>
</tr>
<tr>
<td>Vegetation Cover</td>
<td>Satellite imagery (NDVI)</td>
</tr>
<tr>
<td>Livestock</td>
<td>Livestock’s Survey</td>
</tr>
</tbody>
</table>

Table 9 - Drought monitoring indicators and drought monitoring means

Based on these indicators, a system of drought status classification can be developed, which recognizes 4 stages of drought:

<table>
<thead>
<tr>
<th>Drought Stage</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisory</td>
<td>Indicators remain generally within the expected seasonal ranges</td>
</tr>
<tr>
<td>Alert</td>
<td>Marked negative changes in environmental indicators, cumulative rainfall <70% of mean, and/or an unusually low asset status due to previous losses</td>
</tr>
<tr>
<td>Alarm</td>
<td>Marked negative changes in environmental and rural economy indicators and/or cumulative rainfall <50 of mean</td>
</tr>
<tr>
<td>Emergency</td>
<td>Strongly negative changes in environmental, economic, and human welfare indicators prevail</td>
</tr>
</tbody>
</table>

Table 10 - 4 stages of drought

On the international level, there are several centres with advanced technology that can support and help the countries in drought monitoring by providing them with satellite images and climate conditions projections. Some of these resources include:

- The Experimental African Drought Monitor operated by the Land Surface Hydrology Group at Princeton University with support from the UNESCO International Hydrology Program;
- The Global Drought Monitor, developed by the Department of Space and Climate Physics of the University College London;
- The US Geological Survey (USGS) Famine Early Warning Systems Network (FEWS NET) Data Portal, which is probably the most comprehensive drought monitoring system available. This portal is provided by the USGS FEWS NET Project, part of the Early Warning and Environmental Monitoring Program at the USGS Earth Resources Observation and Science (EROS) Centre. It provides access to geo-spatial data, satellite image products, and derived data products in support of FEWS NET monitoring needs throughout the world. 20 indices including SPI, Daily 10-day Moisture Index, etc. are mapped and easily accessed.

The second important requirement is the GIS database to house the data from the observation network and international centres. This requires professional staff to operate the database, which comes primarily during the analysis part where the meteorological data will be linked with hydrological and socioeconomic data.

The third requirement is the transfer of the monitoring results into action plans at all levels. This needs to have a drought management unit/committee with technical expertise to communicate monitoring outcomes with all stakeholders.
4. Drought Risk Reduction Programs

4.1 Review of International Drought Management Programs (WMO, FAO, UNCCD, etc.)

International organizations are heavily involved in drought management programs in the region. The most active organizations are FAO, UNDP, ICARDA, WMO, UNCCD and ESCWA. Below is a brief description of the international organizations drought management programs.

The FAO has contributed to agricultural improvement and rural development in arid, semi-arid and dry sub-humid zones ravaged by drought and desertification, primarily in the form of technical assistance projects requested by member nations or within programs that group together projects with common priorities (e.g., soil conservation, pasture and livestock improvement, irrigation, etc.).

The FAO has adopted “drought mitigation” as a Priority Area for Interdisciplinary Action, and agreed to help initiate a Network on Drought management for the Near East, Mediterranean and Central Asia (NEMEDCA drought network), along with ICARDA and the International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM). Furthermore, in 2004 and 2005, the FAO approved three technical cooperation projects to assist in drought monitoring and mitigation planning in Syria, Iran and Jordan.

UNDP has worked in Asian and African countries to reduce drought risk by promoting sustainable development and poverty eradication through programs that support: policy development, capacity building, financial and technical support for program development and implementation, advocacy, and outreach and raising awareness. These actions are carried out by providing technical and financial resources through country offices, regional centres like the UNDP Dry lands Development Centre in Kenya and funding programs like the Global Environmental Facility. These programs support a wide range of projects, including assistance in developing national action plan for the UN Convention to Combat Desertification.

ESCWA sponsored studies to better understand drought impacts, vulnerabilities, and mitigation options in West Asia. It has undertaken recent research to better understand the vulnerability of the region to drought. Seeing a need for more research and information on water development and drought, the ESCWA secretariat initiated a series of development reports focused on water resources in the region from 2004 to 2005. The study focused on examining the various components of socioeconomic drought and identifying indicators and mapping socioeconomic drought vulnerability in the ESCWA region, and proposed guidelines and recommendations for including socioeconomic concerns in drought preparedness and mitigation activities in the region. The study utilized three case studies (Jordan, the Syrian Arab Republic, and Yemen) to investigate drought vulnerability and how countries in the region are currently mitigating and managing drought. For each country, the study investigated climatic, water resource, agricultural, environmental, and socioeconomic vulnerabilities, and drought early warning and mitigation strategies. In general, the studies found that there is a lack of understanding and awareness in terms of drought and its impacts, as well as a capacity to mitigate it, in the ESCWA region.

The International Centre of Agriculture Research in the Dry Areas (ICARDA) engages in drought management and mitigation of its effects through the development of technologies. ICARDA mitigation measures have centred

on improvements in production and management of crops, land and water resources through various techniques (e.g. the development of crop varieties and breeds that tolerate drought, adapted livestock management, deficit and supplemental irrigation, water harvesting and no-till or minimum tillage systems). Through these means, ICARDA has supported national programmers and agricultural research systems in the region to promote better natural resource management to increase agricultural productivity and resilience to drought.

With the omnipresent threat of drought in the region due to of climate change, the urgency to integrate drought management into long-term development is fundamental. ICARDA, as part of its efforts, hosts the Network on Drought Management for the Near East, Mediterranean and Central Asia (NEMEDECA), which was created in 2002 with ICARDA, the FAO and the Centre International de Hautes Etudes Agronomiques Méditerranéennes (CIHEAM). The Network serves to enhance technical cooperation among concerned national, regional and international organizations in the region. The Network’s objectives include promoting risk, vulnerability and impact assessments of drought, preparing and creating drought-preparedness and mitigation plans and promoting cooperation in planning and implementing drought-mitigation programmes at national and regional levels. The NEMEDECA network involves nations in the Arabian Peninsula, Central Asia, the Mediterranean European region, North Africa, the Nile Valley and the Red Sea, and West Asia.

NEMEDECA is a partner in the European Union-supported project on Mediterranean Drought Preparedness and Mitigation Planning (MEDROPLAN), which, under the coordination of the Mediterranean Agronomic Institute of Zaragoza (IAMZ), has recently developed guidelines for managing drought risk using preparedness plans and early warning systems. The MEDROPLAN guidelines provide a framework to move from a reactive to a proactive approach in fighting drought through a wide range of methodologies of drought analysis and management involving various stakeholders. In January 2008, ICARDA hosted a workshop about the applicability of these guidelines in Egypt, Gaza and the West Bank, Jordan, Lebanon, Libya, Syria and Turkey. ICARDA is actively involved in developing integrated approaches to enhancing drought and risk management measures and policies with partners and various stakeholders.

For the Maghreb region, a network for the development of drought early warning systems (SMAS) which was established between Morocco, Algeria and Tunisia and it is coordinated by OSS. The plan of action was launched and some activities have started.

4.2 Drought Risk Management at Multiple Levels

There are multiple levels of a drought risk management plan: immediate actions, short term actions, mid-term actions, and long-term actions. Immediate actions tend to be more reactive measures while the longer-term actions are more proactive, which is the main goal for providing drought mitigation. A drought risk management plan must be multifaceted enough to encompass the diverse and multileveled effects of drought as it occurs both at local and national levels, across sectors, and with differing severity. In the regions of Africa and Asia the focus tends to be on food security and water resource issues. As discussed in previous sections, land degradation and poor governance are among the top areas of vulnerability to drought in Asia and Africa, however these areas are among the least common addressed in drought management plans. That being said, drought management, especially in the West Asia and North Africa region, should therefore implement plans to combat poor governance systems and land degradation. As previously emphasized, it is important that countries and communities adopt integrated water resources management (IWRM) in order to help improve and restore the hydrological cycle. The box below describes what mitigation can be implemented at each level of drought risk management.
4.2 Incorporating Community Involvement into Drought Risk Management

The most successful drought risk management practices incorporate community involvement and a community basis for action. Some of the key issues to address when creating a drought management plan include:

Box 1: Indicative List of DRM Activities

Immediate safety net measures:
- Supplying food aid and other non-food items to affected communities
- Providing emergency livestock purchases and subsidies to transport animals to market
- Providing supplementary livestock feeding (fodder, forage, hay distribution, water hauling, opening of strategic grazing area, etc.)
- Promoting emergency vaccination and de-worming
- Providing seed distribution, stockpiling cereals and low-interest agriculture loans and emergency assistance programmes
- Facilitating borehole rehabilitation and water-trucking
- Establishing a local coordinating body to ensure emergency response based upon priorities

Short-term measures:
- Developing water use guidelines based on the types and duration of drought
- Developing emergency water allocation strategies
- Increasing communication of climate-related information, with specific advisories
- Increasing local drought monitoring capacity and infrastructure
- Providing support to farmers for purchase of drought and crop insurance
- Establishing food subsidy programmes for drought-affected individuals
- Providing support to most vulnerable groups, such as women and youth

Mid-term measures:
- Expanding efforts to promote rainwater harvesting
- Introducing improved soil management techniques that decrease soil erosion and increase water-holding capacity of soil
- Adopting alternative cultivars or crops that are more drought-resistant or heat-tolerant
- Addressing bottlenecks in seed delivery systems
- Establishing a system for sharing of experience and capacity development for vulnerable groups in their adaptation measures/responses

Long-term measures:
- Investigating business and farm/ranch diversification strategies (e.g., selecting drought-tolerant varieties, implementing irrigation where feasible and diversifying away from rain-fed crops to less water-dependent products, such as honey from bee-keeping)
- Addressing deforestation and desertification (land degradation in drylands)
- Reviewing the effectiveness of mid-term measures and strengthening capacities as needed
- Strengthening market access and rural infrastructure
- Reinforcing legal, policy and institutional frameworks for drought risk mitigation and dryland development

Figure 11 - Indicative list of Drought Risk Management activities
- The need for integrated drought management practices that emphasize sustainable land and water resource management practices. It is important that drought projects are not segregated or based on one sector or perspective, given the complex nature of drought issues.

- The significance of incorporating indigenous knowledge throughout all aspects of drought risk management, and community-based decisions and considerations not just specific areas of importance.

- The incorporation of multiple methods for raising community awareness of issues related to drought and water scarcity.

- Encouragement of community organizations, such as farmer’s groups and water resource associations, to lead and participate in sustainable development and local natural resource management practices.

- The strong need to diversify crops, livestock varieties, livelihoods, and other important activities and sources that are major income generators in the West Asia and North Africa region.

According to Dr. Anshu Sharma of SEEDS India, the best drought management practices are appropriate at the local level, inexpensive, technically sound, based in indigenous knowledge and practices, incorporate community level initiatives and are in line with the local government. The programmes of the most successful drought management practices also IWRM, security for livelihoods, education, savings, health and opportunities for the community to participate in development. Furthermore the aforementioned drought management principles are highly replicable and can be scaled-up as needed.

4.3 State and Community Level Conflict Prevention by Implementing Drought Management

Based on information from the United Nations Interagency Team for Preventive Action, the main sources of conflict over water include degradation of water quality due to pollution, development and infrastructure projects that reduce water supply, environmental factors changing the availability of water, competition between livelihood groups and different water sectors, unclear water use rights, poor transboundary water management, and changes in the pricing structure of water. These issues are further compounded and may lead to violent conflict when adding factors such as political unrest, ethnic polarization, poverty and poor governing systems. Even though the causes of conflict are multifaceted and cannot be attributed to one source, it is significant to address problems of natural resource availability as a way to promote conflict prevention.

The drivers of conflict for renewable resources interact with and reinforce each other. The section below describes the main drivers of conflict for renewable resources and offers strategies to prevent natural resource related conflicts based on the information from The United Nations Interagency Team for Preventive Action’s report entitled “Toolkit and Guidance for Preventing and Managing Land and Natural Resources Conflict.” Although these guidelines apply to all natural resources, they provide a thorough framework to approach preventing water-specific conflicts. Water is a unique natural resource, however, in that there can be no direct substitute for it. For this reason, water-specific conflict prevention strategies are also included in this section.

Drivers of Conflict:

Driver 1 - Competition over increasingly scarce renewable resources. This occurs when water resources are not sufficient to supply for demand. In water scarce situations, competition between user groups occurs when there are not enough resources to sustain the livelihoods of individuals, families, and livestock. People can respond to the lack of natural resources in a number of ways, including: technological innovation, migration out of the community experiencing the scarcity, cooperation, or violent conflict.
Types of Scarcity:
There are three main types of scarcity: 1.) Demand induced scarcity, 2.) Supply-induced scarcity, and 3.) structural scarcity.

Demand-Induced scarcity refers to times in which the demand for a specific limited resource is too large for existing supply. The per capita availability of water can become limited when population increases, there is development of new technology, or consumption rates of water increase.

Supply-Induced scarcity occurs when there is a problem with the source of the supply, such as land degradation, pollution, or an issue with the delivery infrastructure that then limits the availability of water. During supply induced scarcity, competition between livelihood groups may ensue because this type of scarcity limits the available options for citizens to pursue productive livelihood strategies.

Structural Scarcity happens when there is unequal access to water resources between various social groups. Structural scarcity can occur in both poorly developed and well developed governance systems. Land use decisions, cultural practices, gender roles, societal and economic factors may all influence to occurrence of structural scarcity.

Driver 2 – Poor governance over water resources and other natural resources. Regulations concerning the allocation, access, use, and management of water, as well as the policies and institutions involved with water resources at a community level, are all significant drivers of conflict. Poor governance also refers to the political and social exclusion and corruption which often result in structural scarcity (defined above). On the other hand, with a strong governance system, conflicts that arise from water scarcity and drought can be mitigated if not solved through strong governance. It is important to understand the governing systems at the local and national level so it is easier to identify why conflicts over water are occurring and how they can be addressed most effectively.

Below are the four main causes of poor resource governance:

1) **Water rights and laws are unclear, are contradictory and/or overlap.** One reason for this is that renewable resources are often governed under religious and informal regulations, or have statutory or customary rules and policies. Furthermore, there is often a lack of capacity and authority in regards to enforcement of natural resource laws and policies. Tensions are also heightened when the State does not consider the customary laws of the local communities.

2) **Laws and policies are in place that marginalize specific groups and influence discrimination.** At times, one group may have complete control over natural resources, which often causes an unfair advantage for other groups. If livelihoods are affected, the result is often violence, conflict, or retaliation of some sort. This is another cause of structural scarcity.

3) **Development projects that do not benefit groups equally, or cause more of a burden to some groups than others.** Implementation of infrastructure, large-scale extraction of natural resources, and industrial sites can contribute to beneficial development in some communities, but can also tremendously damage, burden, and marginalize others.

4) **Decision making processes that are not comprehensive or transparent and that exclude public participation.** The state and private sectors are often the main actors in the decision making process, while stakeholders and public community members, who are likely to oppose some decisions concerning natural resources, are not included in the process. Some of the negative outcomes that may occur from exclusion of the public from decision making processes include a sudden increase in prices of resources, eviction, and lack of access to water.
Driver 3 - Transboundary water dynamics. Transboundary conflicts can occur beyond national levels. This becomes a problem particularly when dealing with such issues as pollution, wastewater, climate change, and natural disasters because how one nation uses their water can greatly affect other nations. Combating transboundary water issues requires cooperation and management between neighbouring countries.

The main challenges with transboundary water resources are listed below.

1) Unequal allocation or consumption of water resources across boundaries.

2) Water and other renewable resources are negatively affected by industrial development and changes in land use practices of neighbouring nations. Such issues as pollution, deforestation, and soil erosion can cross borders and create significant human health and ecological problems in other nations.

3) Wildlife and traditional livelihood groups that migrate to other nations in search for natural resources can shift economic opportunities from one country to another.

4) Illegal exploitation of water and other natural resources across borders and the development of global and transboundary criminal networks.

It is also important to note that while climate change is not a direct driver of conflict, it does lead to the availability of fewer water resources.

4.3 Strategies for Natural Resource Conflict Prevention

In order to prevent conflict, the first step is to build trust to enable communities and nations to peacefully co-manage natural resources and determine ways in which each party will benefit equally. Pre-existing political and socioeconomic tensions must be addressed in order for conflict prevention to ensue.
The table below addresses the four main objectives for natural resource conflict prevention and describes how these objectives can be met:

<table>
<thead>
<tr>
<th>Objective 1: Ensure that livelihood groups are not competing over scarce water resources</th>
<th>Objective 2: Improve the governance system in regards to water resources, and increase capacity to resolve conflict</th>
<th>Objective 3: Develop an improved system for transboundary water resources</th>
<th>Objective 4: Employ measures for cost cutting across all programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Reduce vulnerability in livelihood groups by increasing the availability of water. This can be done through better infrastructure, efficiency, and water resource protection.</td>
<td>- Changing governance so that there is equitable access to water amongst users. - Reduce corruption in the governance system by making the decision making process transparent to all stakeholders. - Increase public participation in formation of policies/rules/laws. - Build capacity of stakeholders and citizens in society. - Establish and enforce rights and rules concerning water resources.</td>
<td>- Strengthen transboundary resource information. - Implement resource-sharing agreements across local and national borders. - Harmonize laws and make sure rules and regulations do not overlap.</td>
<td>- Utilize early warning technology, risk assessments, and scenario analyses to determine when and where conflicts are likely to occur based on environmental and social factors and trends. - Implement and design conflict prevention programs. - Ensure that stakeholders are aware of when their interventions may cause conflicts.</td>
</tr>
<tr>
<td>- Support sustainable livelihoods. - Implement supply-side interventions by improving access to water and limiting environmental degradation and pollution.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11- Main objectives for natural resource conflict prevention

Water-Specific Conflict Prevention:

1. Implement Integrated Water Resource Management (IWRM). IWRM involves managing and developing water in a coordinated effort across state institutions and government, instead of managing water sector by sector.

2. Acquire and share accurate scientific information on water quality and quantity when there are potentially water-scarce situations. Joint data collection and the exchange of water data between parties will not only help to build trust, but will equip parties with sound hydrological data from which they may base their management decisions.

3. Adopt benefit-sharing principles instead of simply sharing water resources. This encourages positive-sum outcomes instead of zero-sum outcomes that come about when dividing water.
4. Clearly define and secure water rights at the local level. A raised awareness of water rights may lead to an increase in water productivity and improve rural livelihoods, which is needed for equitable water use and conflict prevention.

5. Implement full cost accounting in water pricing. Make sure that water pricing reflects financial costs, environmental costs, and resource costs. This type of cost accounting should be done in a gradual fashion in order to reduce or prevent conflicts.

6. Build stakeholder capacity, and include marginalized groups in order to engage them in the decision-making process and provide them with access to water policies, services and infrastructure. If stakeholders know what to expect from their water policies and governance system, then it is less likely that conflict will arise.

7. Implement proper and up-to-date technology on a broad scale. Appropriate water technologies will help to increase water efficiency and thus reduce water scarcity. Potential technologies to implement include improved irrigation systems, rainwater catchment and harvesting systems, wastewater management, and pollution control.

8. Protect riparian ecosystems and forested water catchments as forests are key for good quality water. Protecting forests also benefits conservation, economic, and social efforts, as well as mitigates flooding in communities.

9. Conduct Environmental Impact Assessments (EIAs) for infrastructure, irrigation systems, and development. Conducting EIAs will help to determine how development and water systems are impacting water resources. EIAs are a priority and should be implemented at the onset of a project.

10. Create a code of conduct and increase capacity on a local and national scale so that public-private partnerships will be governed effectively. Agreements between public and private sectors should be clearly outlined and transparent.

11. Ensure that river basin commissions and joint riparian agreements are being fully supported. It is important to implement joint monitoring programs, standardize approaches to evaluate agreements on water-sharing principles, and determine how water will be allocated equitably.

12. Determine and monitor national and international indicators that help to identify conflict. Key indicators include the per capita availability of water, the degree to which the state of social livelihood groups are changing, shifts in power relationships in transboundary and sectoral water-sharing parties, ecosystem requirements and the impact of dams and other infrastructure projects.

4.3 Drought Risk due to Transboundary Water Issues

Drought conditions are mainly linked to a drop in rainfall and an increase in temperature. However, there are cases where drought has resulted from transboundary water issues. In most Arab countries, rivers originate from outside the Arab region; for example, the Tigris and Euphrates originate in Turkey and the Nile originates in Ethiopia. Changes in rainfall or temperature in upstream nations will affect the rivers flow to downstream nations. This has resulted in conflicts between riparians. Iraq has suffered from a drop in flows from the Tigris and Euphrates, which has impacted the quality of water and agricultural activities along the rivers. According to

38 Toolkit and guidance for preventing and managing land and natural resource conflict, (2012), The United Nations Interagency Framework Team for Preventive Action, with funding and support from the European Union
Ministry of Agriculture in Iraq, agricultural activities have decreased due to drops in water flow and water quality. In Jordan, the Jordan valley was affected by the diversion of the water downstream of Tiberius Lake to the national carrier inside Israel, which leads to the drying of the Jordan River and a drop in the Dead Sea water table. Egypt, to a certain extent, has also suffered from a drop of Nile flow in recent years.

Drought risk reduction efforts need to be implemented at local, national, regional and international levels. Such efforts are generally aimed at developing enhanced drought monitoring and early warning systems, understanding how populations and countries are vulnerable to the effects of drought, and implementing or enacting effective drought mitigation and response actions, plans, and policies. These activities are generally being implemented either in a piecemeal approach or as part of larger drought planning processes.

In order to reduce the drought risk from transboundary water issues, it is recommended to encourage and strengthen the joint dialogue between riparian countries on all levels, including political and technical. This will provide a common reference and planning framework, and will increase information exchange and coordination between riparian countries, however work is still needed in several fields, such as:

- Developing common systems for monitoring and data management.
- Exchanging and sharing information related to drought
- Establishing joint management plans
- Resolving disputes according to international laws and regulations

To address these challenges, an interdisciplinary approach that responds to the need of managing river basins as social-ecological systems is needed. Such an approach is crucial to understand the diverse and intertwined layers (hydrological, ecological, institutional, economic, and social) that constitute the water system as a framework to address the relationship between natural water resources and social water demands. Therefore, drought risk needs to be assessed using data and methodologies of all scientific fields and economic sectors involved.

In addition to the above measures, drought risk can be reduced through participation in several networks that offer opportunities for enhanced collaboration and information sharing in the region. One of the suggested networks is the Network on Drought Management for the Near East, Mediterranean and Central Asia (NEMEDCA Drought Network) coordinated by ICARDA, FAO-RNE, IAM (CIHEAM) Zaragoza. This Network is based on the tools and guidelines developed through the MEDROPLAN project. NEMEDCA Drought Network is divided into 3 sub-networks:

- Mediterranean sub-network: Albania, Algeria, Cyprus, Egypt, France, Greece, Italy, Jordan, Lebanon, Libya, Malta, Mauritania, Morocco, Palestine, Portugal, Spain, Syria, Tunisia and Turkey;
- The Nile valley, Red Sea and Arabian Peninsula sub-network: Djibouti, Eritrea, Ethiopia, Somalia and Sudan, Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates;
- Central and West Asia sub-network: Iraq, Iran, Kazakhstan, Pakistan, Tajikistan, Turkmenistan and Uzbekistan.

The overall objective of the NEMEDCA is to enhance technical cooperation among concerned national, regional, and international organizations in the region, particularly the exchange of information and experiences among the member countries. The specific objectives are:

- Promoting risk, vulnerability and impact assessment of the effects of drought considering ecological, agricultural and socioeconomic dimensions at national and regional levels;
- Contributing to the creation, development and coordination of drought preparedness and mitigation plans, including harmonization of methodologies and approaches used in member countries. In that context, the MEDROPLAN Drought Management Guidelines should constitute a reference;
- Facilitating the development of national, sub-regional and regional project proposals to address drought priority areas;
- Streamlining the exchange of information on monitoring tools and data on early warning systems among members;
- Promoting the exchange of information on mitigation practices and coping mechanisms to support the decision making process in member countries;
- Strengthening and developing human and institutional capabilities at the national level;
- Promoting cooperation in planning and implementing drought mitigation programs at national and regional levels;
- Disseminating information among concerned organizations and institutions on pertinent drought issues and promoting professional contacts, study tours, expert meetings, training courses, etc.;
- Coordinating activities with other relevant regional and international networks.

In summary, to minimize the drought risk the following issues need to be addressed:

- What are the cost/benefit ratios for the actions identified?
- Which actions do the general public consider feasible and appropriate?
- Which actions are sensitive to the local environment (i.e., sustainable practices)?
- Do the actions address the right combination of causes to adequately reduce the relevant impact?
- Do the actions address short- and long-term solutions?
- Which actions would fairly represent the needs of affected individuals and groups?

4.4 Experience in Including Microfinance and Index-Based Insurance in the Region

Farmers are the most affected group due to drought risk. In developing countries, most farmers/farming companies have their own insurance system to compensate them in case of drought. However, in developing countries in general, and countries in North Africa and West Asia in particular, such system usually does not exist. In some of these countries the government gives partial compensation due to drought, while others do not provide compensation to farmers or affected groups by drought. On the international level, some of the international organizations provide certain types of compensation in the form of technical assistance, tools, free seeds, and fertilizers.

The compensation schemes are considered as part of the wider term microfinance. Microfinance refers to small savings, credit, and insurance services extended to socially and economically disadvantaged segments of society. At present, a large part of microfinance activity is mostly confined to credit. However, there are many cases in Africa, Asia, and Europe where microfinance targets drought insurance.

In Kenya, where farmers increasingly fearing massive weather-related losses, UAP Insurance, Syngenta Foundation, and the mobile operator Safaricom announced a major expansion of Kilimo Salama, an innovative and affordable crop insurance program that will now cover the expected value of farm harvests, more crops, and
many more farmers against drought and flooding, while also protecting against livestock losses. The new program, called Kilimo Salama Plus, builds on the original Kilimo Salama—Kiswahili for “safe farming”—which was launched last year. It uses a low-cost mobile phone payment and data system that is linked to solar-powered weather stations to issue an insurance policy and rapidly compensate farmers for investments in seeds, fertilizer, and other inputs that are lost to either insufficient or excessive rains. Agricultural insurance is particularly important in Kenya and elsewhere in Africa today as extreme weather patterns generated by climate change are introducing greater volatility to food production and food prices. According to Syngenta Foundation, there are 12,000 farmers in Kenya taking advantage of the original Kilimo Salama and have reached their target to provide 50,000 farmers with Kilimo Salama Plus this year and provide far more insurance options. One of the Arab countries that adopted successfully the insurance approach in cereal production is Morocco. This approach is based on the difference between average and potential yields.

40 UAP Insurance, Syngenta Foundation and mobile operator Safaricom, Kilimo Salama micro insurance program, 2011.
5. Drought Management National Policy and Response

5.1 Review of Drought Management Policies in the Region

As stated in Section 1.4, there are variations between countries ‘drought management policies and responses to droughts. Recently, many Arab countries have become more concerned with the problem of drought, and some progress in dealing with this natural disaster has been achieved. One action taken is the establishment of national committees or units, where different ministries are represented to coordinate efforts and actions to reduce the effects of drought on the populations, crops, and livestock, thus improving the livelihoods of the poor. Local committees have also been constituted to implement drought relief measures set up by the national committee.

With assistance from international organizations, the Arab countries have focused on drought relief measures. In fact, as a response to recent reoccurring droughts, most of the Arab Nations have established a drought unit where different concerned ministries are represented to coordinate efforts to deal with drought crises and their impacts. This is a positive initiative and has solved some of the conflicts and lack of coordination among different administrations and agencies concerned with water and drought issues. A national contingency plan and drought emergency program to monitor (through an inter-governmental national committee) and alleviate drought impacts on people, crops, livestock, and agro-pastoral systems is launched. The national committee is usually headed by a high political authority such as the Minister of Agriculture or even the Prime Minister (in the case of Morocco). Provincial or local committees are also formed to implement drought relief measures adopted by the national committee. One example of a coping measures adopted in the region is the provision of supplementary feeds to safeguard livestock investments.

Although governmental plans are mainly based on crisis management of drought, they also recognize the urgent need to develop long-term risk management strategies based on drought preparedness and mitigation. This is due to the efforts of international organizations to enhance the awareness of the seriousness of drought, especially to decision makers. In fact, Arab countries have become more involved in regional and international workshops, networks and research programs aiming at the development of strategies for long-term drought management.

5.2 Elements of Effective Drought Policies and Planning

When creating a policy framework there are a number of principles that must be addressed. First, it is important that policy and planning emphasize proactive prevention of drought over a reactive response to drought. While reactive measures are helpful, they do not address the underlying causes of drought which lead to compounding impacts and the depletion of resources. The resources that go into providing food security and water after a drought provide temporary relief and are not being used in the most efficient and effective ways. To best utilize resources and funding, proactive drought mitigation should be implemented, which includes incorporating proactive drought mitigation principles into national and local policies.

Next, policies and planning should be able to address new drought risks. Droughts are complex and influence and are influenced by multiple factors. For this reason, drought mitigation should be adaptable to multiple scenarios and situations. For example, mitigation should be able to adapt to issues that include, but are not limited to: climate change, urbanization, or problems in the delta regions. For Asia, this is the greatest downfall in drought-related policies and planning, as they are not always adapting to evolving socioeconomic and environmental trends.

One of the major principles is that policies and planning should support the long-term investment to combat the deep-seated problems related to drought and water scarcity. This has proven to be of the most significant topics of concern in Africa. In a study by the UNDP, 40% of respondents reported that long-term investment in drought policies and planning was not represented.
Policies and planning should not only involve, but encourage the participation of public and non-governmental organizations. The public possesses indigenous knowledge and practices that are an integral part of the drought planning process. Non-governmental organizations can help to provide the necessary support, funding and leverage required when planning and creating drought policies.

Creating a policy framework that promotes coordination between stakeholders on all levels (governmental and non-governmental). Involving stakeholders helps to reduce conflict and facilitates positive collaboration. It also helps to ensure that the needs of all stakeholders are being met.

Finally, a drought policy framework should be based on real and current issues at the local level. If drought policies and planning are not aligned with real local issues then they cannot be effective, and therefore should reflect the needs of the community at hand.

5.3 Developing National Strategies and Action Plans for Drought Preparedness

An example of a proper drought preparedness policy is the steps taken to develop such a policy in Iran. These steps included:

1. Creating political momentum and authority
 - Frequent droughts in the Middle East region led to a series of national and regional conferences that focused on developing strategies to mitigate drought.
 - As a result of these conferences, international agencies such as FAO came together to make the drought conditions in the Middle East a priority area for interdisciplinary action (PAIA).
 - Per request, the FAO provided the Iranian government with technical and financial assistance under a Technical Cooperation Program (TCP) project entitled, “A National Strategy and Action Plan on Drought Preparedness Management and Mitigation in the Agricultural Sector”.

2. Strategic Planning and Coordination
 - Together the Ministry of Jihad-e-Agriculture (Department of Agronomy), Ministry of the Interior, and the Ministry of Road and Transportation worked together to execute the TCP project.
 - A National Project Coordinator from the Iranian Department of Agronomy and a consultant from the FAO led the planning of the project, and a Project National Steering Committee was established.
 - The FAO played a key role in coordinating drought-related stakeholders with their efforts and for providing technical advisory and supervisory services.
 - The FAO appointed Iranian agencies to be in charge of a planning process that included outreach to raise awareness of the threat of drought in the country, drought research and discussion for better understanding of drought management roles in Iran, discussion among stakeholders concerning national drought preparedness, and collaboration with stakeholders for a final strategy on drought preparedness.

3. Fostering Involvement and Developing Common Understandings
 - Field visits were made in the drought-affected provinces of Iran so that current drought management strategies and stakeholder perceptions could be assessed.
 - Training seminars were held in order to explain the drought mitigation project and develop proactive drought risk reduction strategies.
 - Visits were also made to universities to learn about drought management throughout the country and to encourage the exchange of information concerning drought.
4. **Investigating Drought Monitoring, Risk, and Management Options**

- Consultants were hired to produce reports on subjects such as:
 - Information on environmental characteristics of the areas exposed to drought in Iran, as well as information on bio-physical and socioeconomic factors
 - Existing drought monitoring tools and methods
 - Case studies that offered plans to mitigate the effects of drought
 - Coordinating mechanisms of drought management
 - An international review on drought to determine lessons learned
- Information from these reports was discussed during two regional workshops in Iran

5. **Writing the National Drought Strategy and Action Plan**

- The team used all information gathered during previous steps to draft a report on the National Strategy for Drought Management in the Agricultural Sector in Iran
- The components of the action plan and strategy include:
 - The development of a national drought management center
 - Implementation of policies that will reduce drought-related vulnerabilities and encourage drought resilience
 - Involve institutions in coordinating efforts concerning drought-related matters
 - Strengthen and build national capacity for drought planning, mitigation, and response

6. **Implementing the National Drought Strategy Action Plan**

- The national drought preparedness strategy will need to be introduced to and approved by parliament
- Experts from the National Disaster Task Force attended a study tour to the FAO/Global Information and Early Warning Service (GIEWS) in order to build national capacity in drought related issues

Brief Overview of CIHEAM Guidelines:

The purpose of CIHEAM’s proposed guidelines is to provide a methodological framework for a drought management plan. CIHEAM’s guidelines include five major components: 1) The Planning Framework, 2) The Organizational Component, 3) the Methodological Component, 4) The Operational Component, and 5) the Public Review Component.

The Planning Framework

The planning framework involves defining the planning purpose and process for developing drought planning at the local, regional, and national scales. The planning framework is an important step in the development of a common language among stakeholders, which will be integral throughout the entirety of the planning process.

The Organizational Component

This component helps the user to understand the legal and institutional frameworks involved in the drought management planning process. It also helps to identify which drought mitigation tools and methodologies are

41 The Near East Drought Planning Manual: Guidelines for drought mitigation and preparedness planning, (2008). Food and Agriculture Organization of the United Nations Regional Office for the Near East, Cairo, Egypt, University of Nebraska Lincoln, National Drought Mitigation Center
most suitable for a specific geographic location. Coordination with various institutions, compilation of societal responses to drought, and the provision of public information are also involved in this component.

The Methodological Component
The Methodological Component involves: developing the indicators of risk to drought and the compilation of scientific and technical approaches to drought; defining methods to combat drought in the Mediterranean region; determining indicators of social vulnerability to drought based on academic methods; and developing technical studies in order to strengthen the use of indices when defining drought.

The Operational Component
The Operational Component includes: early warning systems and preparedness measures; prioritizing efforts during drought and water scarce situations; determining social and physical thresholds as defined by drought indices; and defining and evaluating implementation of actions.

The Public Review Component
The purpose of the Public Review Component is to review and revise the four other components as necessary. This involves stakeholder dialogue, workshops, interviews, and questionnaires in order to receive feedback and update drought plans so that they will be most effective.²²

Comparison of University of Nebraska/FAO strategy and action plan framework and CIHEAM’s Drought Management Guidelines:

Both the University of Nebraska/FAO strategy and action plan framework and CIHEAM’s Drought Management Guidelines provide a thorough framework for how the development of drought management plans should be approached. The similarities in the plans further emphasize the importance of that specific component while the differences propose new ideas that should be considered and possibly implemented into other plans.

Commonalities between the University of Nebraska/FAO guidelines and CIHEAM guidelines:

1. Defining the problem of drought and assessing its impacts (social, political, environmental and financial)
2. Key involvement of stakeholders and the public throughout the drought planning process
3. Creation of committees involving experts in various fields in order to foster an integrated approach to drought management planning
4. Involvement with institutions, academic or otherwise, to exchange ideas and information concerning technology and effective methods of drought management
5. Use of drought and early warning system technology for preparedness measures
6. Assessment of societal vulnerabilities to drought by using indicators and threshold values
7. Development of a mitigation framework
8. Frequent and review and modification of drought plans to increase their effectiveness

5.3 Interaction between Current Drought Management Policies and IWRM Plans

One of the main shortcomings in drought management in Arab countries is the lack of integration between drought management strategy or policy and ministry plans. Given this context, there is an urgent need for action

²² Drought Management Guidelines, European Commission-EuropeAid Co-operation Office, Euro-Mediterranean Regional Programme for Local Water Management (MEDA Water), Mediterranean Drought Preparedness and Mitigation Planning (MEDROPLAN)
in order to integrate a drought management strategy with integrated water resources management plans at the national level. The integration will enhance water sensitivity and promote water considerations within cross-sectoral policies, and mainstream climate change adaptation into IWRM planning. This necessitates developing appropriate tools, building capacity, raising public awareness and promoting water-sensitive environmental education, as well as setting up water partnerships at regional and national levels. The Global Water Partnership (GWP) is one of the leading organizations in the Mediterranean region which is promoting integration between drought management strategies and IWRM planning.

The following areas are the key areas in the IWRM to be linked with drought management strategies:

- Impact of drought projection and strategy actions measured by surface and groundwater availability

 Any potential future drought needs to be identified and linked with surface and groundwater availability for all users; domestic, agricultural or industrial. This will be reflected by adopting certain water conservation measures to control the water demand for all users due to a potential drop in water availability. Accordingly, the various users will be prepared to face the new situation through other alternatives for their livelihood or investments and will help the government in providing suitable services to the users.

- Impact of drought projection and strategy actions on water quality

 Similarly, future droughts will affect water quality. A change in water quality requires proper planning for future investments in water treatment in order to maintain high quality for water supply to all users. The integration of drought strategy actions with IWRM will help the governments to be ready for such a situation and will help decision makers in securing the necessary funds for implementing future projects on water quality.

- Impact of drought projection and strategy actions on monitoring

 Monitoring is an important part of IWRM, and also in a drought management strategy. It is necessary to establish the link between IWRM and drought management actions. More stations (hydrological and metrological) may need to be added, and the frequency of monitoring may be modified.

5.4 Emergency Response that Reinforces National Drought Management Policy Goals

An emergency response is the dominant case in most countries; however the emergency response can be used as the basis for a long-term national policy in response to drought. Drought management policy goals typically focus on early warning and monitoring systems in order to plan a suitable response for projected future droughts. Emergency responses usually focus on:

- Conservation of water supply during a drought period
- Maintenance of supply to domestic and hygiene purposes, and fire protection purposes
- Public health protection
- Minimization of adverse impact of water supply for irrigation and other purposes
- Minimization of adverse impact on environment

The above emergency actions can be integrated into a proactive drought management policy. The emergency measures must be comprehensive and represent the services provided by all stakeholders such as:
- Ministries (Agriculture, Environment, Water, Interior, Planning, Tourism)
- Farmers or Farmer’s Associations
- Water Utilities/Companies
- Chamber of Commerce
- Local Authorities (Governorates)

5.5 Capacity Needs Assessment of National Policy Makers in the Region

Human resource development, training, education and capacity building are essential components of a strategy for effective drought mitigation and management. The objective of capacity building is to put in place a systematic functional mechanism with trained human resources. It has to be understood within a broad perspective that includes knowledge, skills, attitudes, and resources in an integrated manner. A realistic national training and capacity building program for drought management needs to be formulated and implemented. A program of resource enhancement encompassing all institutions, organizations, and individuals also needs be developed. Capacity development/training programs require the following:

- Identification of a target group

Training is the most important activity of all capacity development programs. Training needs have to be identified and appropriate training programs must be designed and conducted at all levels and involve the entire spectrum of stakeholders (from government/NGOs to the community) to fully address the needs of sensitization and knowledge and information management skills. The target groups identified for training and capacity development will focus on government officials including policy makers, NGOs, and academic institutions, who are part of the steering committee.

- Training needs assessment

Training Needs Assessment (TNA) of drought management is should be carried out in order to properly to identify the training areas to be covered based on strengths and weaknesses of trainees.

Special focus will be given to water resources, policy, socioeconomic, legal, water, soil, environment and ecology-related issues.

Training can take different forms, such as:

- Organizing special training sessions for policymakers or other groups
- Meetings, conferences and workshops
- Self-teaching programs
- Manuals and standard procedures

Below is summary table which shows the target group, training topics or areas, and training approach for drought management related fields. This table will be filled at later stage after direct meetings with selected countries to be covered under this project.
Table 12: Target groups for drought management

<table>
<thead>
<tr>
<th>Region</th>
<th>Country</th>
<th>Target Group</th>
<th>Training Areas</th>
<th>Training Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Asia</td>
<td>Jordan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lebanon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yemen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td>Egypt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sudan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Libya</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tunisia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algeria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morocco</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annex:

A1. Potential Drought Mitigation Approaches in the West Asia/North Africa Region

|---------------------------------|---|---|--|--|
| North Africa and Middle East | - Water scarcity
- Frequent drought
- Increase in population causing growing demand for water but decreasing supply
- Transboundary water conflicts
- Water quality issues
- Land degradation from unsustainable water resources practices
- Need for capacity building for water resources
- Need for funding to implement water resources systems (such as proper irrigation systems)
- Frequent water leaks in residential, industrial, commercial and agricultural water systems | As suggested by the Egypt Water Use Project (EWUP):
- Irrigation scheduling
- Precision land levelling
- Implementation of modern irrigation systems such as drip irrigation and sprinklers
- Cleaning and maintaining furrows
- Maintaining canal lining
- Utilization of dikes in order to combat surface drainage
- Improved crop management and low water consumption crop varieties
- Fixing water leaks in irrigation systems and dams
*The Egypt Irrigation Improvement project saw a 15% increase in water efficiency after adopting land levelling interventions Based on success from Mozambique drought management:
- Implementation of water harvesting and catchment structures built next to schools and communities most affected by drought
- Rooftop water harvesting systems
- Implementation of conservation agriculture and drought resistant crops like cassava and sorghum
- Early warning technology | - Improvement on the maintenance of the water supply network
- Utilization of new water saving devices
- Use of high-efficiency washing machines (saves approximately 37% of water)
- Use of landscape water conservation devices includes centralized computer control, moisture sensors, rain shut-off switches
- Implementation of metering and sub-metering for water conservation (could yield savings of between (25% - 40%)
- Recycling and reuse of domestic water Examples of water-saving devices:
- Low-flow showerheads (estimated savings set at 5gallons per day pershowerhead)
- Toilet displacement devices (estimated savings set at 4.2 gallons/day/device)
- Use of ultra-low flush toilets (estimated savings set at 4.2 gallons/day/device)
- Faucet aerators (estimated savings set at 1.5 gallons/day/device) | - Utilization of self-closing faucets. One technology involves a spring loaded faucet lever that closes after a certain amount of time. The second involves an infrared sensor that only turns on the water once it detects that hands are underneath the sensor.
- Utilization of ultra-low-flush toilets
- Use of low-flow urinals (saves approximately 33% of water per flush)
- Using treated waste water is expected to save a great percentage of water |

Table 13- Potential drought mitigation approaches in the West Asia/North Africa region
Acknowledgements

Co-Authors

Sami Areikat, Sustainable Development Officer, Division for Sustainable Development, UN-DESA, United Nations

Loay Froukh, PhD, Independent Consultant, Amman, Jordan

Natalie Bogan, UN-DESA/Division for Sustainable Development Intern, Nicholas School of the Environment, Duke University

Development Team

Carol Chouchani Cherfane, Chief, Water Resources Section, Sustainable Development and Productivity Division, ESCWA

Wenjing Shi, UN-DESA/Division for Sustainable Development Intern, Nicholas School of the Environment, Duke University

Wenxiu Sun, UN-DESA/Division for Sustainable Development Intern, Department of Earth and Atmospheric Sciences, Cornell University

Additional Contributors

Mr. Moussa Yalaoui, Deputy Director, Ministry of Water Resources, Algeria

Mr. Mohamed Abd-El-Moneem Shehata Wahba, General Director, Minister’s Technical Office, Ministry of Water and Irrigation, Arab Republic of Egypt

Mr. Adel Yahya Attallah Al Obeiaat, Geologist, Water Resources Studies Directorate, Ministry of Water and Irrigation, Hashemite Kingdom of Jordan

Ms. Maya Mhanna, Ministry of Agriculture, Lebanon

Mr. Suleiman El-Baruni, Technical Advisor, General Water Authority, Ministry of Water Resources, Libya

Mr. Hassan Abu Albashar Ali Hamdoun, Technical Director, Under Secretary Office, Ministry of Water Resources and Electricity, Sudan

Mr. Habib Hellali, Deputy Director of International Cooperation, Ministry of Agriculture, Tunisia

Mr. Musaed Mohammad Aklan, Local Coordination Expert, Water Crisis Programme, Ministry of Water and Environment, Yemen