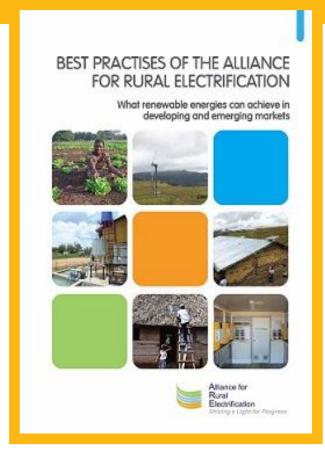


Source: Phaesun


Global Conference: Rural Energy Access –
Session 4: Enabling factors for providing modern energy services to rural areas
Thursday, 5 December 2013, Addis Ababa

Ernesto Macías, President of ARE

- 1. Alliance for Rural Electrification
- 2. Rural energy markets
- 3. Hybrid mini-grids
- 4. Towards upscaling and replication
- 5. Challenges and proposed solutions

1. Who we are, what we do

- International business association promoting offgrid RET solutions to electrify rural areas in developing and emerging countries
- Enabling business and market development through advocacy as well as the facilitation of information.
- Global **knowledge sharing platform** (e.g. showcase best practices as well as develop technical, financial & policy recommendations).

Click image to download publication

1. Diversified & global membership structure

ARE has about 80 members from industry, academia and public sector. 7% from Africa, more than 10 new members in 2013.

1. Strong partners

We partner with international and national organisations, projects and initiatives, the media and other industry platforms.

Selected international partners

1. How we work

2013 (Focus on Africa & Latin		2014 (Focus on Latin America		2015 (Focus on Asia & Africa)	
America)		& Asia)			
1st Semester	2nd Semester	1st Semester	2nd Semester	1st Semester	2nd Semester
Small Wind	Energy Storage	Small Hydropower	Hybridisation & Power	Biomass	Minigrids
			Components		

Main services:

Business & Intelligence

Business creation and development: Representation at conferences, organisation of ARE events (e.g. business delegations, workshops, webinars); facilitation of market, finance and procurement info; as well as project support and management

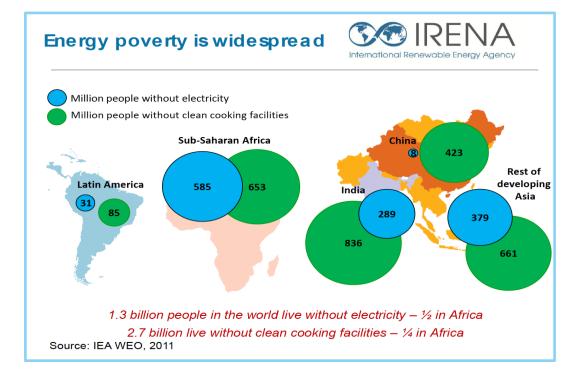
Public Affairs

Awareness creation for nascent rural markets through advocacy, communications & marketing services: campaigns, newsletters, brochures, position papers, tool-kits, market studies.

- 1. Alliance for Rural Electrification
- 2. Rural energy markets
- 3. Hybrid mini-grids
- 4. Towards upscaling and replication
- 5. Challenges and proposed solutions

2. Rural energy market big potential but challenging

Niche:


- 1.1 bn rural people un-electrified
- SSA, Asia and Oceania

Demand:

- Unaware of opports
- Remote and scattered
- Low and irregular income
- Low demand needs

Supply:

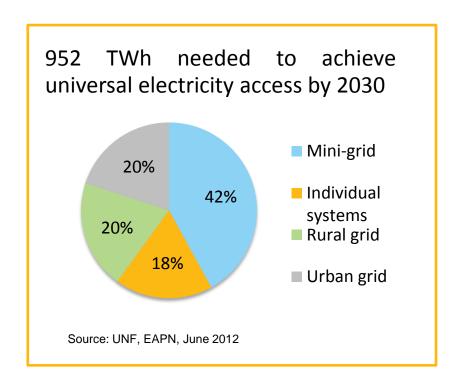
- Low local content
- Lack of feasibility info
- Poor access to finance
- High risks

2. Off-grid RETs essential to tackle energy poverty

Grid extension:

• Fin. and technically unviable

Off-grid diesel:


- Higher LCOEs due to high OPEX
- Important for backup

Off grid RETs:

- Cheapest over system's lifetime
- Solutions ready to be deployed

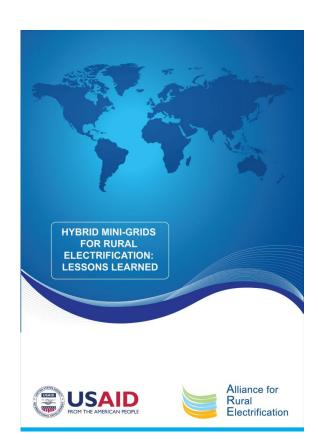
Off-grid RET applications:

- Mini-grids: advanced serv. x isol. comms
- Ind. sys: basic serv. x isol. households

2. Two different kinds of systems

Technology	Advantages	Shortcomings	
Individual plants	High flexibility.	Limited to their specific use.	
Pico (W)	Easy to move and share.	High electricity prices	
Domestic (up to kW)	Systems relatively cheap (cash		
Residential (several kW)	sales model/micro credits)		
Mini-grid fed by RE/	Power for economic activities.	If no backup: Battery storage	
Hybrid systems	Efficient maintenance	needed. Power shortages in cases of unfavourable weather	
Generally up to 1 MW	Easily expandable	conditions.	
	 Stable power supply 	If diesel backup: functioning	
	 Numerous opportunities for hybridization 	depends on availability of fuel. Emissions and noise	
	Relatively cheap electricity prices	High investment costs	

2. The case of the global off-grid PV market


(initial estimate)

Off-Grid Applications		Market potentia	ıls
	People	Residential	Total*
Small PV (ave 30 Wp/user)	~ 470 mio.	2 GW	6 GW
Small PV (ave 100 Wp/user)	~ 470 mio.	6 GW	18 GW
PV based mini-grids (300 kWh/user/a)	~ 470 mio.	16 GW	48 GW

^{*} residential fraction of overall energy demand is typically about 1/3 of total demand

- · 2/3 of not electrified people to be linked with small PV applications.
- · 2/3 of new off-grid capacity to be installed through mini-grid applications.
- Isolated diesel-grids could be upgraded by PV in the order of $\sim 20 40$ GWp.

- 1. Alliance for Rural Electrification
- 2. Rural energy markets
- 3. Hybrid mini-grids
- 4. Towards upscaling and replication
- 5. Challenges and proposed solutions

3. Concept of Mini-grid

- Main sections of mini-grid:
 - **Production:** RETs + genset, storage, converters and management + bus bar.
 - **Distribution:** Low voltage line (AC/DC, single-phase/three-phase).
 - **Demand (end-user) subsystem:** meter, internal wiring, grounding, devices.
- **Generation:** RET generation in hybrid systems represents 75%-99% of total supply
 - **SHP** cheapest technology and most mature (with high efficiency levels), but the most site dependent.
 - **Solar** suitable for almost any location, easy to install, maintain and scale-up. Initial investments costs higher, but prices have dropped sharply over the last decade.
 - **Small wind** site specific, cheaper than solar, but difficult to predict.
 - Batteries core part, help ensure reliability in elec. services and reduce costs.
 - Diesel: system back-up

3. Business models

Community model

- Need for strong involvement from end-users from the beginning
- Community will become owner and operator
- Model needs long preparation period and important capacity building

Private model

- Needs output-based aid and based on long term concession
- Shorter preparation period if priv. sector handles M&O&M
- Needs incentives, but can result more easily to replication

Public model

- Utilities have expertise and financial resources
- · Can take advantage of economies of scale and access to financing
- But their action often lacks efficiency and commitment in rural areas

Hybrid model

- Utility model: Unbundling between generation and distribution (PPA)
- Comm. and private model often need subsidies
- Any model requires some kind of involvement from comm.

3. Mini – grid policy toolkit

Purpose of policy and regulatory frameworks

- Set up the "rules of the road" for mini-grid implementation
- Ensure the public good
- Develop confidence among investors
- Provide incentives and support instruments for project development

Regulatory context

- Wide array of players, i.e. Government ministries, rural electrification agencies, energy regulators, other stakeholders
- Need to create a durable and stable regulatory environment to attract investment

Toolbox for a successful regulatory framework

- Manage the mini-grid development process: process efficiency, accessibility and minimum regulation to further deployment and ensure safety of mini - grids
- Promote innovative business models (esp. given the scarcity of funds)
- Importance of the economic and financial aspects, e.g. tariff-setting, incentives such as subsidies, creating long-term stability of cash flows for business models

3. Mini – grid policy toolkit (2)

- Policy requirements for the (significant) development of mini-grids
 - Three "mandatory" policies
 - Clear private sector development policy
 - Clear rural electrification policies
 - Clear policy support for desired MG business model
 - Supporting policies
 - Rural electrification master plan and agency
 - Tariff guidelines
 - Simple (licensing) procedures
 - Capacity building
 - Helpful policies
 - Technical assistance
 - Non-essential incentives such as short-term tax breaks

3. Need for strong involvement from public sector

Political momentum:

- Energy as target for SGD post-2015
- Donors and countries mini-grid programmes

Role of public sector goes beyond financing

- Project sponsoring
- Project development
- Feasibility and market studies
- Training and awareness creation
- Simplification and standardisation of regulation
- Low import duties, tax exemptions etc...

Countries with MG programmes:

Senegal, India, Brasil, Ghana, China, Bolivia, Mali, Sri Lanka, Peru, Kenya, Nepal, Honduras, Rwanda, Bangladesh, Colombia, Namibia, Indonesia, South Africa, Cambodia, Uganda, Philippines, Tanzania.

Donors working on mini-grids:

- AusAID, USAID
- EC & EUMS (GIZ, ADA, Danida, DFID) + NORAD.
- Regional banks (ADB, AfDB, EIB, IDB),
- WBG (IFC, ESMAP, GEF),
- UN (UNIDO, UNEP, UNDP, UNGC).

- 1. Alliance for Rural Electrification
- 2. Rural energy markets
- 3. Hybrid mini-grids
- 4. Towards upscaling and replication
- 5. Challenges and proposed solutions

4. Towards upscaling & replication

- Solid Public-Private Partnerships
- Smart regulatory framework (e.g. specifically tailored subsidies)
- Risk mitigation mechanisms and credit lines
- Need for training and awareness creation schemes
- Need for market and feasibility studies

- 1. Alliance for Rural Electrification
- 2. Rural energy markets
- 3. Hybrid mini-grids
- 4. Towards upscaling and replication
- 5. Challenges and proposed solutions

5. Challenges and proposed solutions

Challenges	Solutions	
Lack of political will	Stability, long-term master plan and commitment towards RE and access to energy .	
Complex institutional framework	Clear distribution of responsibilities among institutions involved + creation of specialised bodies on RE & RETs	
Inadequate legal and regulatory framework	Simplification, standardisation (licensing, PPAs, authorisation, access to market etc.)	
Public support schemes	One-off for capital investment and/or on-going. Cross-subsidy/ REFiTs / Phase out fuel subsidies.	
Access to finance	Credit schemes, guarantees for the banking sectors	
Lack of information and need for capacity-building on technical, business, financing.	From simple end-user education to building entrepreneurial skills and technical trainings.	
No links to other sectors	Need for an integrated approach: Creation of synergies water, food, telecom sectors	

Thank you for your attention

Future ARE activities on mini-grids:

- Mini-grid publication focusing on finance (GIZ)
- Mini-grid policy toolkit (EUEI PDF & REN21)
- Mini-grids (UNEP)
- Conf. in 2014 together with OTTI
- Technology-focus 2nd semester 2015

Source: Phaesun

Alliance for Rural Electrification (Brussels) – are@ruralelec.org - www.ruralelec.org www.facebook.com/AllianceforRuralElectrification - @RuralElec