Lessons Learned:

Empirical Studies of Innovation and Technology Transfer

December 12, 2013

Professor Kelly Sims Gallagher
Associate Professor of Energy and Environmental Policy
The Fletcher School, Tufts University
Myths and Realities about Innovation

• “No innovation is needed; all that’s required is political will” or, “We can’t take action now because the needed technologies are not available”

 – There are many technologies available to tackle environmental or social challenges that are underutilized due to insufficient market or policy incentives. But, the full suite of technologies to address climate change, at least, probably still do not exist. But that is no excuse for inaction.

• “The solution is a massive ramp-up in R&D expenditures” or, “If only the prices were right, innovation would take care of itself”

 – Government RD&D is a core element of the innovation system, but just one component of broader energy innovation system. A wide range of market failures exist that prevent the private sector from investing in ways consistent with social needs even when prices are “right”. No single policy mechanism.

• “We need a balanced portfolio” or, “Technology X is the answer”

 – With scarce resources, you cannot avoid “picking winners”. Still, there is no silver bullet. All technologies have some liability.
Innovation Theory

Photo of Building Integrated PV hotel in Baoding, China
The Growth Model of Innovation

Source: Innovation Chapter, Global Energy Assessment, 2012
The Ladder of Capabilities

<table>
<thead>
<tr>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invention</td>
</tr>
<tr>
<td>Demonstration</td>
</tr>
<tr>
<td>Technology modification</td>
</tr>
<tr>
<td>Technology manufacturing and export</td>
</tr>
<tr>
<td>Technology acquisition, absorption, and domestic diffusion</td>
</tr>
</tbody>
</table>

Make or buy decision?
Key Processes in Innovation Systems

• Entrepreneurial experimentation
• Knowledge development and exchange in networks
• Guidance of the search
• Market formation
• Resource mobilization and materialization
• Counteracting resistance to change
Empirical Point #1: Costs Don’t Always Fall

Figure 24.11 | Chapter 24 Case Studies summarized: Cost trends of selected non-fossil energy technologies (US$/kW installed capacity) versus cumulative deployment (cumulative GW installed). Source: Chapter 24 case studies.
Average and min/max reactor construction costs per year of completion date for US and France versus cumulative capacity completed.

Empirical Point #2: Innovation is no longer OECD/national. It is global.
BRIMCS Public Energy RD&D

<table>
<thead>
<tr>
<th></th>
<th>In Million 2008 PPP $\text{Int}^\text{a}</th>
<th>Fossil (incl. CCS)</th>
<th>Nuclear (incl. fusion)</th>
<th>Electricity, transmission, distribution & storage</th>
<th>Renewable energy sources</th>
<th>Energy Efficiency</th>
<th>Energy technologies (not specified)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States - Gov't</td>
<td>659</td>
<td>770</td>
<td>319</td>
<td>699</td>
<td>525</td>
<td>1160</td>
<td>4132</td>
<td></td>
</tr>
<tr>
<td>United States - Other</td>
<td>1162</td>
<td>34</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>1350</td>
<td>2545</td>
<td></td>
</tr>
<tr>
<td>Brazil - Gov't</td>
<td>79</td>
<td>8</td>
<td>122</td>
<td>46</td>
<td>46</td>
<td>12</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>Brazil - Other</td>
<td>1167</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>184</td>
<td>1351</td>
<td></td>
</tr>
<tr>
<td>Russia - Gov't</td>
<td>20</td>
<td>no data</td>
<td>22</td>
<td>14</td>
<td>25</td>
<td>45</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Russia - Other</td>
<td>411</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>508</td>
<td>918</td>
<td></td>
</tr>
<tr>
<td>India - Gov't</td>
<td>106</td>
<td>965</td>
<td>35</td>
<td>57</td>
<td>no data</td>
<td>no data</td>
<td>1163</td>
<td></td>
</tr>
<tr>
<td>India - Other</td>
<td>694</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico - Gov't</td>
<td>140</td>
<td>32</td>
<td>79</td>
<td>no data</td>
<td>no data</td>
<td>252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico - Other</td>
<td>0.11</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>263</td>
<td>194</td>
<td>282</td>
</tr>
<tr>
<td>China - Gov't</td>
<td>6755</td>
<td>12</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>4300</td>
<td>11803</td>
<td></td>
</tr>
<tr>
<td>China - Other</td>
<td>289</td>
<td>7</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>26</td>
<td>985</td>
<td>1307</td>
</tr>
<tr>
<td>South Africa - Gov't</td>
<td>no data</td>
<td>133</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td>9</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>South Africa - Other</td>
<td>154</td>
<td>312</td>
<td>26</td>
<td>7</td>
<td>no data</td>
<td>no data</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>BRIMCS - Gov't</td>
<td>7100</td>
<td>1149</td>
<td>> 259</td>
<td>> 117</td>
<td>> 208</td>
<td>> 4966</td>
<td>> 13799</td>
<td></td>
</tr>
<tr>
<td>BRIMCS - Other</td>
<td>2724</td>
<td>>> 38</td>
<td>>> 26</td>
<td>>> 7</td>
<td>>> 289</td>
<td>> 1696</td>
<td>> 4781</td>
<td></td>
</tr>
<tr>
<td>BRIMCS - Grand Total</td>
<td>9824</td>
<td>> 1187</td>
<td>> 285</td>
<td>> 124</td>
<td>> 497</td>
<td>> 6662</td>
<td>> 18580</td>
<td></td>
</tr>
</tbody>
</table>

- Data from United States, Brazil, Russia, India, China and South Africa based on 2008, Mexico on 2007.
- Other includes (whenever available) funding from state and local governments, partially state-owned enterprises, NGOs, and industry.
- U.S. data on industry expenditure is from 2004 (NSF 2008).
- Based on PEMEX's fund for Scientific and Technological Research on Energy.
- Based on total non-governmental investments into PBMR Ltd.
- Based on 2005 R&D expenditure in car manufacturing industry (CONACYT 2008)
- Based on 2005 R&D expenditure in utilities sector (CONACYT 2008).
- These cumulative values are based on data from only three to four BRIMCS countries, so actual expenditures are likely to be higher.
- These cumulative values are based on data from two BRIMCS countries or less, so actual expenditures are expected to be much higher.
Empirical Point #3: Global energy investments mostly supply-side, mostly fossil fuels

Source: Wilson, C. et. al 2012, “Marginalization of end-use technologies in energy innovation for climate protection” Nature Climate Change

Figure 2 | Global mobilization of financial resources for energy technologies. Energy efficiency improvements in end-use technologies (green). Energy resource extraction and conversion disaggregated into fossil-fuel (brown), renewable (blue), and nuclear, network and storage (grey) technologies (see Supplementary Information for details). The phase-out stage of the innovation lifecycle is included to highlight its importance for capital stock retirement and replacement (that allows for growth of post-fossil-fuel alternatives); however, insufficient data exist to populate its cells.

<table>
<thead>
<tr>
<th>Energy technologies</th>
<th>RD&D</th>
<th>Niche markets</th>
<th>Diffusion</th>
<th>Phase-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-use</td>
<td>8</td>
<td>5</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Conversion</td>
<td>15</td>
<td>15</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Resource</td>
<td>12</td>
<td>12</td>
<td>>>2</td>
<td>20</td>
</tr>
</tbody>
</table>

- Efficient end-use
- Renewables (supply)
- Fossil fuel (supply)
- Other (including nuclear grids)

Size of symbols proportional to resources mobilized (labels in $billion or ? if unknown)
The Globalization of Clean Energy Technology
LESSONS FROM CHINA
Kelly Sims Gallagher
Assertions Policymakers Make

• We cannot cooperate with/transfer/sell/export technology to [China] because it will be stolen
• We do not have access to clean energy technologies due to patent protections and other restrictions [India]
• The costs of clean energy technologies are prohibitively high for developing countries [G-77]
• There are many barriers to the transfer of technology [UNFCCC]

All hypotheses worth investigating. . . What is the empirical evidence?
Mechanisms for diffusion

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Variation</th>
<th>Used by Chinese firms to acquire from foreigners</th>
<th>Used by foreign firms to acquire from China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exports or imports of final goods</td>
<td>Equipment for manufacturing</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Licenses</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Purchase of foreign firm (M&A)</td>
<td>To acquire technology; merger</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Strategic alliance or joint venture</td>
<td>Partial or 100%-owned</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Migration of people for work or education</td>
<td>As entrepreneur, consultant, or employee recruited overseas</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Contract with research entity</td>
<td>IP is negotiated with foreign university lab, research institute, firm</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Collaborative RD&D</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Open sources</td>
<td>Textbooks, conferences, journal articles, exhibitions</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Bi-lateral or multi-lateral technology agreement</td>
<td>Research, development, demonstration</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Intellectual Property: 3 Research Methods
知识产权：3种方法

• Case studies
 – Evidence of infringement from interviews
 • One notorious case (Sinovel vs. AMSC)
 • Several minor incidences, none life threatening to firm. Evidence of withholding from interviews
 – Limited evidence of withholding
 • Gas turbines
 • Hybrid electric vehicles

• Analysis of invention patents granted

• Analysis of court cases
 – No Chinese vs. foreign IP infringement court cases in case studies (except for Sinovel), not in the case selection
Gas Turbine Invention Patents
燃气轮机发明专利

Wind Power Invention Patents
风电发明专利

Coal Gasification Invention Patents
煤气化发明专利

Solar PV Invention Patents
光伏发明专利

Market failures pervasive but policy can correct for them

• Energy markets are far from “perfect”
 – Asymmetric information (e.g. OPEC vs. consumers)
 – Highly subsidized in some countries
 – Highly regulated in some countries

• Externalities are pervasive and not valued by market
 – Energy security costs
 – Costs of conventional air pollution in terms of public health, premature death, damage to infrastructure
 – Costs of climate change (benefits of avoiding it, costs of adaptation)
National and Sub-National Market-Formation Policies and International Trade in Clean Energy Technologies

国家和次国家单元的市场形成政策与全球清洁能源技术贸易的关系

Global trade volume (colors) in Billions (current USD)

Cumulative number of new market-formation policies in that year (black line)

Solar PV Wind energy Gas turbines Lithium Batteries New policies

Trade data from COMTRADE (UN Statistics Division). Policy data compiled from various sources by Gallagher, K.S. 2013
Conclusions

1. Clean energy innovation is no longer a national process: it has globalized
2. Most important barriers are cost (due to market failures & distortions), lack of policy, insufficient access to finance
3. Best incentives are market-formation policies, provision of affordable finance
Updating an integrated theory

1. Diffusion is part of a global ETIS – a systemic approach required
 – Harmonization?
2. Most diffusion occurs through private markets
3. Diffusion caused by national and sub-national market formation
4. Market formation is wider than niche markets – structural change is needed (big is beautiful in market scale)
5. Anti-competitive behavior and monopolistic structures hinder diffusion
6. Core to periphery pattern true but international networks matter
7. Appropriateness, absorptive capacity indeed important
8. Technological leapfrogging is possible but not automatic
Thank you

Prof. Kelly Sims Gallagher
The Fletcher School, Tufts University
kelly.gallagher@tufts.edu