PROGRESS TOWARD SUSTAINABLE ENERGY
Global Tracking Framework 2015
The Scale of the Access Challenge

1.1 billion people lack access to electricity, and it is believed that $45 billion is needed annually to connect them by 2030.

Tier 0
- no access
- 20 Wh/d

Tier 1
- task lighting & charging
- 20 Wh/d
- 275 Wh/d

Tier 2
- general lighting, TV & fan
- 274 Wh/d
- 1 kWh/d

Tier 3
- tier 2 & low power appliances
- 1 kWh/d
- 3.4 kWh/d

Tier 4
- tier 3 & medium power appliances
- 3.4 kWh/d
- 8.2 kWh/d

Tier 5
- tier 4 & high power appliances
- 8.2 kWh/d

BUT

There are varying levels of electricity access. How does required investment change with tiers?
Access Investment Model (AIM)

AIM is a non-prescriptive tool that can be used by governments and stakeholders to estimate costs of and simulate pathways to universal access in a specific country or region.

- Electricity access tiers incorporated
- Nuanced demand representation
- Detailed supply cost formulation
- Complete sector value chain captured
- Scenario and sensitivity analysis possible
Advantages of AIM

It is a tool developed specifically for decision-makers:

- Transparent and accessible
- Incorporates electricity access tiers
- Enables users to make realistic demand assumptions specific to context and consumer type; demand can change over time
- Includes detailed formulation of capital and recurrent generation, transmission & distribution costs
- Is county-specific and considers geography & population density
- A portfolio of different supply options for each region, electrification method, and tier can be specified
- Enables users to test various scenarios and conduct sensitivity analysis

NOTE: AIM should not be used to replace detailed geospatial sector analysis
Investment needs in high impact countries

Annual Investment Required for Varying Levels of Access (BUSD)

Global Annual Investment Required to Achieve Access Tier (BUSD)

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5
Countries need to define universal access

- Globally, the investment required to achieve universal electricity access ranges from $1.5 billion to $52 billion per year

- Investment requirements vary significantly per tier & per country
 - This is largely impacted by factors such as land area and topography, population density, supply resources & technologies, and cost of transmission & distribution
 - Options exists for a wide range of investment budgets, and Tier 1 to Tier 5 access investment requirements can differ by as much as 35X

- AIM can be used to help:
 - Policy-makers transparently quantify the investment needed to achieve varying levels of electricity access most appropriate for their aspirations and political will
 - Countries set access targets for themselves considering budgetary constraints
RISE: Investment climate for energy access

Policies and Regulations

- Existence and implementation of electrification plan
 - Existence of an officially approved electrification plan
 - Public availability of electrification plan
 - Regular update of electrification plan (< 5 yrs)
 - Entity responsible to tracking progress of electrification plan
 - Timeframe
- Scope of electrification plan
 - Existence of service level target
 - Inclusion of off-grid solutions
 - Inclusion of community facilities and productive users
 - Inclusion of informally settled people
 - Inclusion of geo-spatial mapping
- Grid electrification
 - Funding support to capital cost
 - Funding support for consumer connections
 - Standards of performance on quality of supply
- Mini-grids
 - Legal framework for operation
 - Ability to charge tariffs freely
 - Financial incentives
 - Standards and certification programs
- Stand-alone systems
 - Existence of a national program
 - Financial incentives
 - Standards, certification, and environmental regulations
- Affordability of electricity
 - Cost of subsistence consumption
 - Policy to support low-volume consumers

Cross Cutting

- Utility transparency and monitoring
 - Public availability of financial statements
 - Public availability of annual reports
 - Public availability of reliability data
 - Usage of outage recording system
- Utility financial performance
 - Operational cost recovery
 - System losses
 - Bill collection rate
 - Operating margin (EBIDTA)
 - Debt service coverage ratio
 - Current ratio
 - Days payable outstanding

Procedural Efficiency

- Time and Cost of Establishing a new household grid connection
 - Rural customers
 - Urban customers
- Time and Cost of permitting a new mini-grid facility
RISE: Preliminary findings for energy access

South Asian countries score higher than those in Sub-Saharan Africa on nearly all indicators.

Average scores for each indicator for South Asia, Sub-Saharan Africa:

- Framework for grid electrification
- Framework for mini-grids
- Framework for stand-alone systems
- Consumer affordability of electricity
- Utility Transparency and Monitoring
- Utility Creditworthiness
- Scope of officially approved electrification plan
- Existence and monitoring of officially approved electrification plan

South Asia
Sub-Saharan Africa
Multi-Tier Framework for Clean Cooking (1/2)

Framework developed in close discussion with WHO, Berkley Air Monitoring Group and Global Alliance

<table>
<thead>
<tr>
<th>1. Indoor Air Quality</th>
<th>Level-0</th>
<th>Level-1</th>
<th>Level-2</th>
<th>Level-3</th>
<th>Level-4</th>
<th>Level-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$ (μg/m3)</td>
<td>[To be specified by a competent agency such as WHO based on health risks]</td>
<td>[To be specified by a competent agency such as WHO based on health risks]</td>
<td>[To be specified by a competent agency such as WHO based on health risks]</td>
<td><35 (WHO Guideline)</td>
<td><10 (WHO Guideline)</td>
<td></td>
</tr>
<tr>
<td>CO (mg/m3)</td>
<td>[To be specified by a competent agency such as WHO based on health risks]</td>
<td>[To be specified by a competent agency such as WHO based on health risks]</td>
<td>[To be specified by a competent agency such as WHO based on health risks]</td>
<td><7 (WHO Guideline)</td>
<td><7 (WHO Guideline)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Cook-stove Efficiency (Not to be applied if cooking solution is also used for space heating)</th>
<th>Level-0</th>
<th>Level-1</th>
<th>Level-2</th>
<th>Level-3</th>
<th>Level-4</th>
<th>Level-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary solution meets Tier-1 efficiency requirements to be specified by a competent agency consistent with local cooking conditions.</td>
<td>Primary solution meets Tier-2 efficiency requirements to be specified by a competent agency consistent with local cooking conditions.</td>
<td>Primary solution meets Tier-3 efficiency requirements to be specified by a competent agency consistent with local cooking conditions.</td>
<td>Primary solution meets Tier-4 efficiency requirements to be specified by a competent agency consistent with local cooking conditions.</td>
<td>Primary solution meets Tier-4 efficiency requirements to be specified by a competent agency consistent with local cooking conditions.</td>
<td>Primary solution meets Tier-4 efficiency requirements to be specified by a competent agency consistent with local cooking conditions.</td>
<td>Primary solution meets Tier-4 efficiency requirements to be specified by a competent agency consistent with local cooking conditions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Convenience</th>
<th>Level-0</th>
<th>Level-1</th>
<th>Level-2</th>
<th>Level-3</th>
<th>Level-4</th>
<th>Level-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Acquisition and Preparation Time (Hrs / wk)</td>
<td>< 7</td>
<td>< 3</td>
<td>< 1.5</td>
<td>< 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stove Preparation Time (Min/meal)</td>
<td>< 15</td>
<td>< 10</td>
<td>< 5</td>
<td>< 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Framework is conducive to nationally different standards for cook-stoves, as well as development of a framework for DALYs.
Multi-Tier Framework for Clean Cooking (2/2)

<table>
<thead>
<tr>
<th>3. Safety of Primary</th>
<th>Level-0</th>
<th>Level-1</th>
<th>Level-2</th>
<th>Level-3</th>
<th>Level-4</th>
<th>Level-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWA Safety Tiers</td>
<td></td>
<td></td>
<td>Primary solution meets (Provisional) ISO Tier-2</td>
<td>Primary solution meets (Provisional) ISO Tier-3</td>
<td>Primary solution meets (Provisional) ISO Tier-4</td>
<td>No accidents over the last one year that required professional medical attention.</td>
</tr>
<tr>
<td>OR, Past Accidents (Burns and Unintended fires)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 4. Affordability | | | | | Levelized Cost of Cooking Solution (incl. cook-stove and fuel) <5% of HH Income | |

| 6. Quality of Primary Fuel Variations in heat rate due to fuel quality that affects ease of cooking | | | | | No Major Affect | |

| 7. Availability of Primary Fuel | | | | Primary fuel is readily available for at least 80% of the year | Primary fuel is readily available throughout the year | |

Tier-rating for the household is calculated by applying the lowest of the tier-ratings across all attributes.
Thank You