European Biomass Conference and Exhibition(EUBCE), 11~15 June 2017, Stockholm, Sweden **#2AO.8.5**

Biomass Co-firing Studies for Commercial-Scale Applications in Korea

Won YANG^{1,2}

Principal researcher/Professor

¹Thermochemical Energy System Group Korea Institute of Industrial Technology

²University of Science and Technology, Korea

Current issues in coal power generation

- Fuel diversity: Low-rank coals, Bio-SRFs
 - Energy security
 - RPS (Renewable portfolio standard)

 CO₂ abatement: 37% reduction on BAU bases by 2030 (25.7% domestic and 11.3% with purchasing carbon credit)

- CCUS
- Biomass co-firing
 - The easiest way to reduce CO₂ and secure REC(Renewable energy certificate)
 - > 90% should be imported from other countries
- Efficiency enhancement: Retrofit & USC/A-USC
- Emission of particulate matters: PM10 and PM2.5
 - Effects to current PM concentration in Korea have not clearly found yet
 - But causes reduction in portion of coal power generation (currently ~ 40% of total electricity generation in Korea) by new government (10/05/2017~)

Co-firing of renewable fuels to conventional boilers

Biomass-dedicated PowerGen

- Donghae CFBC biomass power plant(EWP): 30 MW New plant
- Several plants are under construction
 - KOSEP: Yeongdong Unit #1 (125 MW): Retrofit
 - GS EPS: Samcheok biomass-dedicated powergen (105 MW): New plant
 - ...

Donghae CFBC Biomass-dedicated Power Plant (30 MW, EWP) - Currently in operation

Yeongdong Unit #1 (125 MW, Pulverized coal, KOSEP) - being retrofitted to biomass-dedicated power generation system

Project overview: biomass co-firing to a PC power plant

- Background: Obligation to produce electricity partially by renewable energy (RPS)
- Purpose
 - Maximize co-firing ratio (up to > 10%)
 - Securing REC(Renewable energy certificate) for power companies in KOREA
 - − Flexibility in co-fired fuels: Wood pellet → PKS, EFB, and BioSRF
 - Reduce NOx in the furnace: using reburning
- Applied to Samchunpo Power Plant in Korea
 - 500 MWe, Pulverized coal power plant (Owned and operated by KOEN)

Basic concept

- Tested in
 - 80 kWt test furnace in KITECH (combustion, slagging/fouling..)
 - 1 MWt multi-burner furnace in KITECH (Co-firing methods)
 - Commercial power plant (500 MWe) in Samcheonpo TPP, KOREA)

Direct co-firing study

Burners

pulverizer

Process Simulation: Case selection

• Main coals (sub-bituminous coals) confirmed from the target plant (500MW)

		Proximate analysis (wt.%) ^a			Ultimate analysis (wt.%) ^{a,b}						HHV	
Fuel		М	VM	FC	А	С	Н	Ν	S	0	Cl	(Kcal/kg)
Coal	Design	10.3	42.0	46.2	1.5	64.4	4.7	0.89	0.098	18.1	-	6249.0
	Adaro	17.2	39.2	40.8	2.9	57.7	4.0	0.98	0.083	17.2	-	5489.5
	Adaro47	19.5	39.9	37.2	3.4	55.7	3.9	0.91	0.089	16.5	-	5310.0
	TL	32.0	28.0	25.0	15.0	37.7	3.0	0.71	0.900	10.7	-	3666.7
	WP	8.3	82.0	8.6	1.1	46.8	5.6	0.10	0.010	40.7	0.003	4471.8
	EFBP	7.7	73.5	17.8	1.0	47.0	5.7	0.28	0.004	46.3	0.015	4375.2
Biomass	PKS	9.8	59.6	14.8	15.9	48.4	5.7	1.04	0.014	39.1	0.018	4605.2
	WS	9.3	70.5	19.2	1.1	48.5	7.1	1.33	0.029	37.2	-	5110.2
	ТВ	3.1	62.5	33.3	1.1	71.2	4.6	0.01	0.010	22.3	-	6666.3

a: Wet basis, b: Elemental analyzer, c: Channiwala and parnikh equation, TL: Texas lignite, WP: Wood pellet, EFBP: Empty fruit bunch pellet, PKS: Palm kernel shell, WS: Walnut shell, TB: Torrefied biomass (from torrefaction under 325 °C, 30 min)

Process flow diagram on the target PCPP (gCCS)

Coupled analysis of gas side and water/steam side

Simulation procedure

- Basic input parameters for process simulation
 - Physical property method: Peng-Robinson equations for gas side and IAPWS-25 for turbine island
 - Steady-state flow
 - Same parameters on turbine island in all case: Mass flowrate of feed-water and pressure
 - Oxygen concentration at the exit of the furnace: 3 % in case studies
 - Air leakage at the air pre-heater: 6.79 wt.%

 $\frac{\text{Mass flowrate of air in leakage}}{\text{Mass flowrate of flue gas}} \times 100$

Main simulation conditions

Daramatara	M.V.	Combustion of low rank coals				Biomass co-firing					
Parameters		Case1	Case2	Case3	Case4	Case5	Case6	Case7	Case8	Case9	
Coal	D	TL	А	A47	A+A47	A+A47	A+A47	A+A47	A+A47	A+A47	
(Thermal share %)	(100)	(100)	(100)	(100)	(60+40)	(60+30)	(60+30)	(60+30)	(60+30)	(60+30)	
Biomass						WP	EFBP	PKS	WS	ТВ	
(Thermal share %)						(10)	(10)	(10)	(10)	(10)	

D: Design coal, TL: Texas lignite, A: Adaro coal, A47: Adaro47 coal, WP: Wood pellet, EFBP: Empty fruit bunch pellet, PKS: Palm kernel shell, WS: Walnut shell, TB: Torrefied biomass

Power consumption in the pulverizer

Power consumption of pulverizers obtained from HGI* test

- HGI of the fuel is directed related to the power consumption of mills
- Coal-biomass blends have lower HGI and higher fuel feedrate

→ More milling power is required

 However, AC+TB(Torrefied biomass) has similar milling power requirement due to high HGI and lower fuel feedrate than other biomass co-firing cases

*Hardgrove grindability i **Bond work index	Jgrove grindability index nd work index								
Fuel	TL	AC	A47C	AC	AC	AC	AC	AC	AC
(Thermal base %)	(100%)	(100%)	(100%)	(60%)	(90%)	(90%)	(90%)	(90%)	(90%)
				+A47C	+WP	+EFB	+PKS	+WS	+TB
				(40%)	(10%)	(10%)	(10%)	(10%)	(10%)
More than 75 μ m (g)	-	-	-	-	45.56	45.45	45.24	46.14	45.11
HGI	60	51	51	51	43.8	44.5	46.0	39.8	46.9
BWI (kJ/kg)	30.82	34.06	34.06	34.06	36.65	36.60	35.86	38.09	35.53
Fuel amount (kg/s)	86.76	56.54	58.52	57.34	58.86	59.52	58.49	58.14	56.21
Milling power requirement (MWe)	2.673	1.9 2 6	1.993	1.952	2.157	2.166	2.097	2.215	1.997

Minimum power consumption among biomass co-firing cases

Plant efficiency

Gross plant efficiency

Net plant efficiency

 $\frac{Gross \text{ power generation } \times 100}{Mass \text{ flowrate of fuel} \times HHV \text{ of fuel}}$

(Gross power generation – Total power consumption) $\times 100$ $\eta =$ Mass flowrate of fuel × HHV of fuel

- Less efficiency for biomass co-firing case, but
- TB co-firing case shows the larger efficiency than the AC/AC47 case

Experimental works – 80 kW_{th} furnace

Test condition for direct co-combustion

- Fuel: Trafigura (Bituminous coal)
- Co-fired biomass: Wood pellet, Palm kernel shell, Empty fruit bunch, Walnut shell
 - Average particle size: 400 μm
 - Directly mixed with coal and introduced to the burner
- Thermal input: 80 kW
- Stoichiometric ratio: 1.2

Fuel	Conditions	Ref.	WP 10%	WP 20%	PKS 10%	PKS 20%	EFB 10%	EFB 20%	WS 10%	WS 20%
	Heat ratio (%)	100	90	80	90	80	90	80	90	80
Coar	Fuel rate (kg/hr)	10	9	8	9	8	9	8	9	8
Diamana	Heat ratio (%)	0	10	20	10	20	10	20	10	20
DIOMASS	Fuel rate (kg/hr)	0	1.6	3.2	1.9	3.8	1.7	3.4	1.6	3.2
Flowrate of Oxidizers	*PA (Nm³/hr)	9.2	8.4	8.2	8.4	8.2	8.4	8.1	8.4	8.1
	**SA (Nm³/hr)	85.5	84.4	83.5	84.7	83.5	83.7	83.4	83.8	82.8

*PA: Primary air

**SA: Secondary air

Temperature distribution

- In co-firing cases,
 - Upper part of the furnace temperature was lower than reference case
 - Because biomass contains more moisture and less fixed carbon → Low heating value
 - Higher temperatures in the downstream due to the fact that
 - Particle size of the biomasses was larger than coal
 - Char reaction became slow, caused increase in burn-out time

Area-averaged temperature distribution along axial distance

Gas concentration at the exit

- CO concentration at the exit increases by biomass co-firing
 - Due to slow reaction of biomass char oxidation (C + $\frac{1}{2}O_2 \rightarrow CO$)
- NO_x concentration
 - NO_x emission decreases by biomass co firing
 - − Reference case: 348.5 ppm, EFB 20% case: 282 ppm → Max 19.1 % reduced
 - Other combustion conditions (e.g. local stoichiometric ratio) can affect the NOx emission regardless of the fuel nitrogen

Component	U	Ultimate analysis(%wet)							
Component	С	Н	0	Ν	S				
Trafigura	67.2	4.7	10.3	1.4	0.6				
Adaro	55.8	5.3	17.1	0.7	0				
Wood pellet	45.5	5.5	39.6	0.1	о				
Palm kernel shell	38.8	4.6	31.3	0.8	о				
Empty fruit bunch	43.2	5.2	42.6	0.3	0				
Walnut shell	41.1	6.0	31.6	1.1	0				
Torrefied biomass	61.9	5.8	28.1	0.7	0				

During co-firing experiment -1 MW_{th} furnace

Stable combustion can be observed for 20% biomass co-firing

Reburning

Test conditions

- Main fuel: Adaro (Subbituminous coal)
- Co-firing fuel: Wood pellet, Empty fruit bunch, Torrefied biomass
- Thermal input: 1 MW
- Stoichiometric ratio: 1.2

2450

Result of direct co-firing condition – 1MW_{th} furnace

- NOx concentration decreases as SR(stoichiometric ratio) decreases
 - Air staging is effective for NOx reduction
- NOx reduction
 - Co-firing < Co-firing + Air staging < Reburning
- Torrefied biomass shows slightly higher NOx concentration than other biomass
 - Contain less moisture compared to biomass

CFD simulation results (500 MW) 1

Case Name	Furnace exit temperature	Furnace heat recovery	NOx (reduction)
Reference	1295 °C	1043 MW_{th}	184 ppm
WP-8A	1236 °C	1001 MW_{th}	156 ppm (-15%)
WP-5A	1239 °C	1010 MW_{th}	163 ppm (-11%)
WP-5B	1199 °C	1030 MW_{th}	155 ppm (-16%)
WP-5C	1249 °C	1011 MW_{th}	119 ppm (-35%)
PKS-5A	1188 °C	1016 MW_{th}	175 ppm (-5%)

- Various biomasses, Co-firing ratios & Co-firing methods
- Co-firing method is most important for NOx reduction

CFD simulation results (500 MW) 2

- Target: In-furnace NOx reduction
- Main operating parameter: Equivalence ratio in the burner zone

Case_ref

Commercial operation

- Commercial power plant(500MW_e) in Samcheonpo, Korea
 - NOx reduction characteristics for biomass co-firing and coal firing
 - Operating condition
 - fuel : Coal Bituminous coal+ subbituminous coal, Biomass Woodpellet
 - Experiment Period for biomass co-firing : 57 hr
 - Biomass co-firing ratio : mass basis 6%, heating value basis 4.9%
 - NOx reduction ratio by co-firing : Max 28.6%, Min 24.5%
- Reburning of biomass was not applied Risks in adding new facility(Biomass dedicated mill)
- Torrefaction can be a good option for enhancing co-firing ratio

💠 КІТЕСН

Lab-scale torrefaction experiment (1)

- Lab-scale fixed-bed type
 - Major parameters
 - Nitrogen vs Steam
 - Temperature

< Van Krevelen diagram of various samples>

Lab-scale torrefaction experiment (2)

- Grindability of torrefied biomass lab-scale pulverizer
 - When torrefied by steam, grindability was better
- Optimum torrefaction temperature:
 - Dependent on the object function
 - In this study: ~270°C

Pilot-scale experiments

	Proxi	mate ar	alysis (wt.%)	Elem	HHV				
	М	VM	FC	Ash	С	Н	Ν	0	(MJ/kg	
WP	5.6	78.6	15.4	0.4	48.8	5.6	0.59	39.0	18.85	
TWP	1.7	75.5	22.4	0.4	54.5	5.8	0.3	37.3	21.53	

Superheated steam 1 Boiler Exhaust2 Exhaust1 1 Torrefied Biomass Biomass Boiler 2 Superheated steam 2

Superheated steam

합성가스 연소기

Torrefaction system

Superheated steam

Conclusion

- Pilot-scale combustion tests were conducted for three direct co-firing methods: (1) Blending, (2) Blending + Air staging, (3) Reburning
- Low N content in biomass compared to coal reduces fuel NOx formation
- NOx emission decreases with increasing biomass co-firing ratio
- Reburning was the most efficient among the three direct co-firing technologies
- Torrefaction can be a feasible option for enhancing co-firing ratio of biomass without modification of the facility (e.g. biomass-dedicated mill)
- Other issues being studied
 - Slagging/fouling
 - Corrosion
 - PM generation in biomass co-firing