Renewable Energy Potential and WtE Project in Myanmar

Dr Hla Toe¹, Dr Khin Khin Kyaw²
1. Associate Professor, Department of Physics, Bago University,
2. Associate Professor, Department of Physics, Pyay University
National Energy Policy with ten salient points is under reviewing.

The main points on Renewable Energy Sector,

- In extraction and utilization of natural resources,
 - To minimize the environmental impacts
 - To invite the local and foreign investments
 - To carry out CSR

- for defining the energy pricing
 - To observe the ASEAN and international energy pricing policy
 - To ensure stable and fair price for consumer
 - To guarantee the economic benefits for energy producers and energy distributors

- In getting more generation,
 - to generate electricity not only from hydro, renewable and thermal power plants but also from other available energy resources.

- To be planned for increasing of reserved power
- To be fulfilled electricity demand of off-grid areas
Myanmar Total Primary Energy Production

Source: Consultant’s estimate based on data of MOE, MOEP, MOGE, MPPE, MOECAF, and CSO
Myanmar total primary energy supply

Source: Consultant's estimate based on data of MOE, MOEP, MOGE, MPPE, MOECAF, and CSO
Myanmar total primary consumption by sector
Biomass

In Myanmar, nearly 52.5 percent of the total land area is covered with forest. 30.5 percent are reserved forests and 69.5 percent are unreserved ones. Wood-fuel plays vital role for cooking and cottage industries in both urban and rural areas. The main supply of wood-fuel comes from natural forest, fuel wood plantations, homestead garden, community forest and tops and lops from timber extracted areas. Natural forests produce about 19.12 million cubic tons of wood fuel annually.
Biomass uses in Myanmar rural area

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Biomass Sources</th>
<th>Dry Ton</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fuel wood</td>
<td>3.76</td>
<td>42.7 %</td>
</tr>
<tr>
<td>2</td>
<td>Pigeon pea stalk</td>
<td>2.3</td>
<td>26.2 %</td>
</tr>
<tr>
<td>3</td>
<td>Cotton stalk</td>
<td>0.5</td>
<td>5.6 %</td>
</tr>
<tr>
<td>4</td>
<td>Sesame stalk</td>
<td>1.2</td>
<td>13.6 %</td>
</tr>
<tr>
<td>5</td>
<td>Coconut or palm leaves</td>
<td>0.6</td>
<td>6.8 %</td>
</tr>
<tr>
<td>6</td>
<td>Rice husk</td>
<td>0.3</td>
<td>3.0 %</td>
</tr>
<tr>
<td>7</td>
<td>Sawdust</td>
<td>0.07</td>
<td>0.8 %</td>
</tr>
<tr>
<td>8</td>
<td>Bamboo</td>
<td>0.12</td>
<td>1.3 %</td>
</tr>
</tbody>
</table>

Source: U San Thein, Ministry of Agriculture and Irrigation, Myanmar
Development of bio-diesel Production in Myanmar

Jatropha Plantation

Jatropha Fruits

Jatropha Seeds

Crude Oil Expeller

Demonstration Unit (Continuous Type)

Demonstration Unit (Batch Type)
THE GOVERNMENT'S GUIDANCE FOR THE DEVELOPMENT OF THE BIODIESEL PRODUCTION

Planning for Jatropha plantation:

- Year (2006 - 2007), total area - 3 million acres
- Year (2007 - 2008), total area - 4.5 million acres
- Year (2008 - 2009), total area - 6 million acres
- Year (2009 - 2010), total area - 7.5 million acres
- Year (2010 - 2011), total area - 8 million acres
The gasification system for rural area application in Myanmar
Wind power research projects are under-way in the areas which have the wind-speed of 3m/s and above to be able to produce wind-energy and output power is 300W.

This is the small-scale wind mill constructed by the renewable energy research team of Department of Physics, Taungoo University.
Complete Combustion achieves the minimized emission of CO, NOX, and DXN
Waste Yard

Type - Half Open Space
Storage Area - 450 m²
Storage Capacity - Appro; 200 tons
Furnace System

Furnace

- **Type**: JFE Hyper Grate System
- **Combustion Chamber Volume**: 55.27 m3
- **Combustion Rate**: 165.9 kg/m2h
- **Grade Area**: 31.6 m2
- **Waste Feeder**: 2.5 t/h
- **Combustion System**: Two way flue gas combustion (with Intermediate Ceiling)

![Diagram showing various zones and gases](image)
Heat Recovery System

Boiler

- Type: Natural Circulation type Waste heat boiler
- Boiler Steam Outlet Flow Rate: 8.6 t/h
- Steam Outlet Temperature: 375°C
- Steam Pressure (Maximum): 2.26 Mpa
Flue Gas Treatment System

Bag Filter

Type - Pulse Jet On Line Cleaning
Flow Rate - 15000 m³/N/h
Dust Content - 2.2/0.02g/m³ N
Material of Filter - PTFE with PTFE membrane
Steam Turbine

<table>
<thead>
<tr>
<th>Type</th>
<th>Fully Condensate Turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Steam Pressure</td>
<td>1.3 Mpa (Min)</td>
</tr>
<tr>
<td>Inlet Steam Temperature</td>
<td>350°C</td>
</tr>
<tr>
<td>Exhaust Steam Pressure</td>
<td>9.8 kPa</td>
</tr>
<tr>
<td>Steam Flowrate</td>
<td>4.71 t/h</td>
</tr>
<tr>
<td>Speed</td>
<td>9804 RPM</td>
</tr>
</tbody>
</table>
Power Generation System

Generator

- Type: Air cooled three phase Synchronizing Generator
- Power Output: 760 kW
- Speed: 1500 RPM
Ash Handling System

Bottom Ash Extractor

- **Type**: Hydraulic Pusher
- **Capacity**: 0.7t/h
WtE Projet in UY Schematic diagram of operation
Hot water Boiler 100,000(kcal/h)
Sectional component

20KW POWER
(Production of electricity)

Turbine

Exhaust gasses

Work Out
Schematic diagram of operation

Hot water Boiler 100,000(kcal/h)

Hot-water (3K,100°C)

Turbine

Exhaust gases

70°C

Condenser

20KW POWER (Production of electricity)

Recycle-Pump

50°C

The System can be modified according to specifications of equipment.
Investment cost of schematic diagram

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Price</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incinerating boiler</td>
<td>100,000 kcal/h</td>
<td>1</td>
<td>30,000</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>Power generating Turbine</td>
<td>20 kw</td>
<td>1</td>
<td>58,000</td>
<td>58,000</td>
<td></td>
</tr>
<tr>
<td>Electric work</td>
<td>1 SET</td>
<td>1</td>
<td>3,000</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>Automatic control work</td>
<td>1 SET</td>
<td>1</td>
<td>2,000</td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td>Construction work(machinery room)</td>
<td>1 SET</td>
<td>1</td>
<td>5,000</td>
<td>5,000</td>
<td></td>
</tr>
<tr>
<td>Total price</td>
<td></td>
<td></td>
<td></td>
<td>98,000</td>
<td></td>
</tr>
</tbody>
</table>

- Our investment cost is the estimated amount by our company and may change depending on the conditions of the installation site.
Benefits of this system

1. Clean the environment around the school – reducing the amount of waste
2. Supporting the school’s finance through generating and supplying electricity with incineration power generator – reducing the electricity cost
3. Installation of electric power supply is not needed – reducing the cost of infrastructure
4. Utilization of national waste resources – Improving supply of electricity and environment
5. Fulfilling public(consumer)’s demand and rising government’s credibility
6. Diversifying fuel sources - household waste, PKS, macadamia and etc.,
Climate Change

- Consistent with its predominantly hydro-based power production and low industrial development, Myanmar has one of the lowest levels of absolute and per capita greenhouse gas emission rates in the world.
- This is unlikely to change significantly in the medium-term future. However, climate change is expected to have a major impact in Myanmar with forecasts of increased flooding, sea levels rises, and increased temperature variations.
- Climate change adaptation is therefore the priority concern for Myanmar.
Conclusion

• It can clearly be seen, from our presentation, that the production and consumption of various kinds of energy from our country, does not make any harmful consequences on the global warming, we are giving our best efforts on the environmental preservation and conservation.

• Renewable energy is needed to use for rural area application, so we try to do research for this need.
Acknowledgement

• We are deeply thanks to UNOSD for support to us and Professor Jung-In Dong for invitation to us.
Thank You For your Kind Attention