2018 International Forum on Sustainable Application of Waste-to-Energy in Asia Region
February 22-23, 2018
Novotel Ambassador Hotel Busan, Korea

STATUS OF AGRICULTURAL WASTE AND UTILIZATION IN THE PHILIPPINES

Presented by:
Ofero A. Caparino, Ph.D.
Chief Science research Specialist
BioProcess Engineering Division, PhilMech
About PHilMech

Philippine Center for Postharvest Development and Mechanization

Mandate

Generate, extend and commercialize appropriate and problem-oriented agriculture and fishery postharvest and mechanization technologies.
The Development Framework of PHiLMech

TWIN MANDATE

RESEARCH AND DEVELOPMENT
- AREAS OF CONCERNS:
 - EFFICIENT DRYING AND DEHYDRATION
 - HANDLING, STORAGE AND PROCESSING
 - MYCOTOXIN, PESTS AND DISEASES PREVENTION AND CONTROL
 - AGRICULTURAL WASTE AND BY-PRODUCT UTILIZATION
 - APPROPRIATE MECHANIZATION TECHNOLOGIES

IMPROVED AND APPROPRIATE TECHNOLOGIES AND SYSTEMS
- TECHNOLOGY MANAGEMENT AND TRAINING
- COACHING AND MENTORING
- FARM OR BUSINESS ADVISORY
- DATA MANAGEMENT
- INFORMATION, EDUCATION AND COMMUNICATION

EXTENSION
- REDUCTION OF POSTHARVEST LOSSES
- VALUE ADDING
- FOOD SAFETY AND QUALITY PRESERVATION
- EFFICIENT RESOURCE USE
- SUCCESSFUL AND PROFITABLE ENTERPRISES

IMPACT
- IMMEDIATE/LONG TERM EFFECTS
- GLOBALLY COMPETITIVE and SUSTAINABLE AGRI-FISHERY SECTOR

AREAS OF CONCERNS:
- EFFICIENT DRYING AND DEHYDRATION
- HANDLING, STORAGE AND PROCESSING
- MYCOTOXIN, PESTS AND DISEASES PREVENTION AND CONTROL
- AGRICULTURAL WASTE AND BY-PRODUCT UTILIZATION
- APPROPRIATE MECHANIZATION TECHNOLOGIES
STATUS OF AGRICULTURAL WASTE AND UTILIZATION IN THE PHILIPPINES
International comparison of cost of electricity

Source: Energy market authority, Singapore, 2013
Access to modern energy sources in ASEAN, 2011

Source: World Energy Outlook, September 2013
One of the important concerns for a sustainable community is its capability to generate affordable, dependable and renewable energy sources.
Approximately 32% of the country’s total land area are agricultural land, of which 51% and 44% are arable and permanent croplands, respectively.

Area: 30 Million Ha (13 M ha agricultural lands)
Population: 102,250,000 (2016)
Population density: 343 per square kilometer
Major Sources of Biomass in the Philippines

Legal Definition: RA 9513 (Sec. 4b)

- Non-fossilized biodegradable organic materials
- Originating from naturally occurring or cultured plants, animals & microorganisms include agri/by-products, residues
- rice hull/straw, corn cob/stalk,
- sugarcane bagasse, trash,
- coconut husk/shell, frond
- animal manure: poultry, piggery, etc.
- Biodegradable Industrial Wastes/MSW
- energy crops: napier grass, sweet sorghum, bamboo
Major Sources of Biomass in the Philippines

Rice

- **Root**
- **Leaf/Straw 50% Availability**
- **Panicle**
- **Grain**
- **Husk 22% of Grain Weight**

Corn

- **Tassel**
- **Leaf**
- **Corn Ear**
- **Cob 27% of Plant Weight**
- **Stalk**

Biomass Parts of a Rice and corn Plant (Regalado, MJ.C & Tadeo, B.D, 2013; Full Advantage Phils)
Major Sources of Biomass in the Philippines

Coconut

Main Biomass Parts of a Coconut Tree (Regalado, MJ.C & Tadeo, B.D, 2013; Full Advantage Phils)

Sugarcane

Cane tops and leaves
Juicing cane
29% bagasse
Molasses
Brown sugar
Major Sources of Biomass in the Philippines

Manures from Poultry and piggery farm

Source: www.wouterdevriendt.be
City Waste Generation by SOURCES, tpd

Source: Baguio City SWM Plan, 2015
Theoretical and technical residue volume of major crops in the Philippines, 2016 (Adapted from Tadeo, B.D. 2015)

<table>
<thead>
<tr>
<th>Crop/Animal</th>
<th>Production (1)</th>
<th>Agricultural Residues</th>
<th>RPR (2), %</th>
<th>Theoretical tons</th>
<th>Recovery ability (5), %</th>
<th>Technical tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rice</td>
<td>17,627,245</td>
<td>Rice husk</td>
<td>22.5</td>
<td>3,966,130</td>
<td>95</td>
<td>3,767,824</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rice straw</td>
<td>100.0</td>
<td>17,627,245</td>
<td>50</td>
<td>8,813,623</td>
</tr>
<tr>
<td>2. Corn</td>
<td>7,218,816</td>
<td>Corn cob</td>
<td>27.0</td>
<td>1,949,080</td>
<td>95</td>
<td>1,851,626</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corn stalk</td>
<td>400.0</td>
<td>28,875,264</td>
<td>50</td>
<td>14,437,632</td>
</tr>
<tr>
<td>3. Coconut</td>
<td>13,825,080</td>
<td>Coco husk</td>
<td>33.3</td>
<td>4,603,752</td>
<td>90</td>
<td>4,143,376</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coco shell</td>
<td>15.0</td>
<td>2,073,762</td>
<td>95</td>
<td>1,970,074</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coco frond</td>
<td>197.7</td>
<td>27,332,183</td>
<td>50</td>
<td>13,666,092</td>
</tr>
<tr>
<td>4. Sugarcane</td>
<td>22,370,546</td>
<td>Bagasse</td>
<td>29.0</td>
<td>6,487,458</td>
<td>95</td>
<td>6,163,085</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cane trash</td>
<td>10.0</td>
<td>2,237,055</td>
<td>50</td>
<td>1,118,527</td>
</tr>
<tr>
<td>5. Poultry (birds)</td>
<td>183,429,000</td>
<td>Chicken manure</td>
<td>4.5(3)</td>
<td>61,907,288</td>
<td>75</td>
<td>46,430,466</td>
</tr>
<tr>
<td>6. Hog (head)</td>
<td>22,316,600</td>
<td>Pig manure</td>
<td>2.0(4)</td>
<td>669,498,000</td>
<td>70</td>
<td>468,648,600</td>
</tr>
</tbody>
</table>

Sources: (1) FAOSTAT, 2016: rice, corn, coconut, sugarcane production are in tons while poultry in number of birds weighing 1.5 kg each, and hog in number of heads weighing 100 kg each; (2) Department of Agriculture (DA), PhilRice, Philippine Coconut Authority (PCA), Sugar Regulatory Administration (SRA), Philippine Sugar Millers Association (PSMA);(3) 4.5% daily chicken manure production effectively for 5 days per harvest; (4) 2.0% daily pig manure production effectively for 15 days per harvest; (5) Philippine Association of Renewable Energy Centers (PAREC), Full Advantage Phils International, Inc. (FA)
Technical Power Potential, 2016 (Adapted from Tadeo, B.D. 2015)

<table>
<thead>
<tr>
<th>Agricultural Residues</th>
<th>Technical Volume, tons</th>
<th>Electrical Generation (1) kWh/kg</th>
<th>Power Potential (2) MWe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice husk</td>
<td>3,767,824</td>
<td>0.627</td>
<td>308</td>
</tr>
<tr>
<td>Rice straw</td>
<td>8,813,623</td>
<td>0.774</td>
<td>888</td>
</tr>
<tr>
<td>Corn cob</td>
<td>1,851,626</td>
<td>0.932</td>
<td>225</td>
</tr>
<tr>
<td>Corn stalk</td>
<td>14,437,632</td>
<td>0.872</td>
<td>1,639</td>
</tr>
<tr>
<td>Coco husk</td>
<td>4,143,376</td>
<td>1.398</td>
<td>754</td>
</tr>
<tr>
<td>Coco shell</td>
<td>1,970,074</td>
<td>1.758</td>
<td>451</td>
</tr>
<tr>
<td>Coco frond</td>
<td>13,666,092</td>
<td>1.139</td>
<td>2,027</td>
</tr>
<tr>
<td>Bagasse</td>
<td>6,163,085</td>
<td>0.316</td>
<td>254</td>
</tr>
<tr>
<td>Cane trash</td>
<td>1,118,527</td>
<td>0.545</td>
<td>79</td>
</tr>
<tr>
<td>Chicken manure</td>
<td>46,430,466</td>
<td>0.240</td>
<td>1,451</td>
</tr>
<tr>
<td>Pig manure</td>
<td>468,648,600</td>
<td>0.030</td>
<td>1,831</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>9,906</td>
</tr>
</tbody>
</table>

Sources: (1) Averages from different sources (energy generation rate is dependent on the biomass heating value and moisture content, and electric efficiency of certain technologies) as mentioned in the following studies: Energy Efficiency and Power Generation in the Philippine Agro-Industries by Full Advantage Co. Ltd. for the International Finance Corporation; Biomass Resource Assessment in the Philippines by Philippine Association of Renewable Energy Centers (PAREC) for GEF=UNDP-DOE-CBRED Project. (2) Based on a 320-day annual operation. (3) Full Advantage Phils International, Inc.
Existing bio-energy conversion technologies being applied in the Philippines

1. Direct combustion
2. Biomass carbonization and densification
3. Gasification
4. Biogas
1. Direct combustion

Direct Combustion - This makes use of agricultural residues such as rice-hull from the mill, cogeneration using coconut shell, bagasse in sugar mills, kiln-drying of lumber, tobacco-curing, bakeries and other industries for the generation of electrical and heat energy.
Biomass Furnace

- Simple and compact design
- Fully automatic operation
- Clear air output
- With excellent temperature control system
- With ash scrubber unit
- 2 in 1 machine (heater and carbonizer)
Biomass-fed mechanical dryer

- Low operating cost and maintenance
- Dries paddy from dripping wet to 14% in 12 hrs at 40-45°C
- Driven by a 12.5 hp diesel engine
Biomass-fed mechanical dryer
Two-stage drying system for cocopeat
✓ 1st stage: Belt press
✓ 2nd stage: rotary drum dryer
Biomass-fed mechanical dryer
Drying system for granulated cassava and animal feeds
✓ 6 layers of conveyor belts
✓ Fitted with PHilMech Biomass furnace
Rice Hull-Fire Power Plant (Privately owned-Operational)

Operational Biomass Power Plants under the project of Full Advantage Philippines
Rice Hull-Fired Power Plant (Privately owned-Operational)

Renewable Energy Project Development and Implementation

iPower (12 MWe) Phase 1
San Jose City, NE

IBEC (20 MWe)
Isabela

BBEC (5 MWe)
Pili Camarines Sur

GIFT (12 MWe)
Nueva Ecija

iPower (12 MWe) Phase 2
San Jose City, NE
2. Biomass Carbonization and Densification
3. Gasification

This is the process biomass fuel goes through to obtain fuel gas which can either be burned in a boiler or used for generating mechanical power using a diesel engine.

Philrice gasification stove
4. Biogas

Biogas –is a kind of gas that is produced during the anaerobic processing of organic matter such as manure, plant matter, or even municipal waste materials.

Existing Bio-energy Conversion Technologies Uses
- Cooking
- Brooding and mantle lamp
- Commercial oven
- Generator
- Waster pump
- Rice cooker

Scalable polyethylene drum digester (Bureau of Animal Industry)
Some barriers on Biomass Utilization/ Adoption

- Practice of open field burning of agricultural waste/biomass is the cheapest and practical option prior to land preparation.
- Non-availability of efficient collection system of biomass after harvesting
- Limited initial capital expenditure for modern bio-energy technologies
- Lack of institutional set-up that could facilitate and promote biomass production for energy.
Philippine enabling laws on the utilization of agricultural waste for sustainable development
Important Philippine enabling laws enhancing the utilization of agricultural waste and sustainable development

<table>
<thead>
<tr>
<th>Republic Act (RA)</th>
<th>Description</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA 6969</td>
<td>Toxic Substances and Hazardous and Nuclear Wastes Control Act of 1990</td>
<td>- regulates, restricts or prohibits the importation, manufacture, processing, sale, distribution, use and disposal of chemical substances and mixtures that present unreasonable risk and/or injury to health or the environment</td>
</tr>
</tbody>
</table>
| RA 8749 | Clean Air Act of 1999 | - Reduction of greenhouse gas (GHG) emissions in the country.
- Prohibits incineration of municipal, biomedical and hazardous waste, except in cases of traditional small-scale method of community/neighborhood sanitation “siga”, traditional, agricultural, cultural, health, and food preparation and crematoria. |
Important Philippine enabling laws enhancing the utilization of agricultural waste and sustainable development

<table>
<thead>
<tr>
<th>Republic Act (RA)</th>
<th>Description</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA 9003</td>
<td>Ecological Solid Waste Management Act of 2000</td>
<td>mandates Local Government Units to divert at least 25 percent of their solid waste into recycling and composting, and away from disposal sites.</td>
</tr>
<tr>
<td>RA 9275</td>
<td>Philippine Clean Water Act of 2004</td>
<td>Directs the DENR to safeguard our water resources and implement a wastewater charge system in all management areas through the collection of wastewater charges/fees.</td>
</tr>
<tr>
<td>RA 9367</td>
<td>Biofuels Act of 2006</td>
<td>Mandates the blending of minimum 10% (E10) motor fuel grade (anhydrous), eventually locally-sourced bioethanol and 2% biodiesel and other biofuels made from biomass and primarily used for motive, thermal and power generation.</td>
</tr>
</tbody>
</table>
Important Philippine enabling laws enhancing the utilization of agricultural waste and sustainable development

<table>
<thead>
<tr>
<th>Republic Act (RA)</th>
<th>Description</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA 9513</td>
<td>Renewable Energy Act of 2008</td>
<td>- Establishes the framework for the accelerated development and advancement of renewable energy (RE) resources (biomass, solar, wind, run-off river hydro), and the development of a strategic program to increase its utilization.</td>
</tr>
<tr>
<td>RA 9729</td>
<td>Climate Change Act of 2009</td>
<td>- Systematically integrates the concept of climate change in various phases of policy formulation, development plans, poverty reduction strategies and other development tools and techniques by all agencies and instrumentalities of the government.</td>
</tr>
</tbody>
</table>
Important Philippine enabling laws enhancing the utilization of agricultural waste and sustainable development

<table>
<thead>
<tr>
<th>Republic Act (RA)</th>
<th>Description</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| RA 10068 | Organic Agriculture Act of 2010 | - Promotes, propagates, develops further, and implements the practice of organic agriculture that will cumulatively condition and enrich the fertility of the soil and increase farm productivity;
 | | - Reduce pollution and destruction of the environment; prevent the depletion of natural resources;
 | | - Protect the health of farmers, consumers and the general public. |
Climate Change Mitigation and Adaptation

The 2000 greenhouse gas (GHG) inventory, the Philippine agricultural sector emitted more than 37,000 Gg CO2-equivalent, which is a 12% increase in the 1994 inventory.

GHG mitigation and adaptation measures:

- Use of agricultural wastes for renewable energy generation (RA 9513)
- Organic fertilizer production (RA 10068)
- Eliminate open field burning (RA 8749, RA 9003)
- Less water in irrigated rice
Final Remarks

- Energy from biomass constitutes an important part of the total energy supply in the country.
- Biomass energy is an ideal option to replace expensive energy supply during peak hours.
- Agricultural waste/ Biomass is widely distributed and available in the country.
- Agricultural waste/ biomass has the most positive community impact in the avoidance burning agricultural waste.
- Power from the agricultural waste/ biomass has significant potential across the entire country.
- Biogas technology was included in the animal waste resource management program.
- The government and the private sector must join hand and hand to utilize the untapped energy from biomass.
Mabuhay !
References

