

Fluidized Bed Combustion of MSW

Yong CHI, Ph.D Email: chiyong@zju.edu.cn

Professor, College of Energy Engineering Zhejiang University, Hangzhou, China

Outline

Combustion reactors & fluidized bed combustion

Design of CFB combustion system for wastes

Introduction of commercial fluidized bed waste to energy plants

1. Combustion reactors & fluidized bed combustion

- Fixed bed
- Fluidized bed
- Features of fluidized bed combustor

Parameter Determination

Basic differences of mass fired incineration and SRF fluidized bed combustion (FBC)

Mass fired incineration on grate

- Combustion in a moving bed (layer)
- Bed on the grate
- Supply easy also for large particles
- Mechanical transport of the waste during combustion
- Large pieces of waste allowed

Fluidized bed combustion(FBC)

- Combustion in a fluidized sand bed
- Particles burn "separately"
- Particles have to float in the air flow
- Effective mixing of particles with sand and air
- Particle size has to be reduced (max. appr.50-100 mm)
- Effective heat transfer between fuel particles, bed particles and gas

Grate furnace

Grate combustors place the fuel on a grate (often sloped), with combustion air provided both below and above the grate.

Advantages

- Simple and reliable structure
- Easy to operate
- Low cost (investment & operating)

Disadvantages

- Grate firing
- Burning out time
- □ Low energy efficiency

Combustion on moving grate

Fluidized bed reactor Fluidized bed combustor burns fuel

by adding it to a continually stirred bin of heated sand-like material. This arrangement allows for extremely even heating of the fuel and high efficiency of combustion.

Advantages

- Good gas-solid contact & mixing
- High specific heat capacity
- Can accommodate variations in fuel quality

Disadvantages

- Carbon loss with ash
- □ Feed pre-processing required

Fluidized bed reactor

Fluidized bed combustor

Fluidized bed reactor

Why Fluidized Bed

- Capable burning different kinds of waste
 - low heating value high moisture waste
- Incineration residue can be easily treated
 - very low combustible content in residue ash
 - dry ash
- Low pollutants emission
- Coal can be used as assistant fuel
- Effective energy recovery
- Good operation performance
- Low operation cost

Comprison between Grate furnace and CFB

Comparison items		Grate Furnace	CFB
Life Cycle Cost	CAPEX (Capital expenditures)	Relatively higher	Low
	OPEX	Similar	Similar
Feedstock Composition	Quality requirements on feedstock for furnace	Relatively low	Relatively high and pretreatment is needed
	Adaptability to feedstock heat value	Average	High
Operating Efficiency	MSW burn-off rate	Hard to control	High
	Feedstock reduction	Relatively low	High
	Utilization ratio of thermal energy	Low	High
Pollution Control	Atmospheric pollutant	Higher content of dioxin and NOx	Lower content of dioxin and NOx
	Leachate treatment	Hard	Complete incineration can be reali

Features of fluidized bed combustion

> Suitable for low heating

value fuel

Stable operation at 850 -

900*℃*

High combustion efficiency

and intensive heat transfer

2. Design of CFB combustion system for wastes

- Waste pre-treatment and feeding
- Furnace and waste heat boiler

Waste feeding - Pretreatment

Waste pretreatment (mechanical treatment) processes

- Particle size reduction Crushing
- Separation based on particle size Screening
- Separation based on **density** differences Air separation, floating/sinking
- Magnetic separation Ferrous metals
- Separation based on **electric field** Eddy current Aluminum
- Optic separation Near Infrared (NIR), colour identifying separable materials
- Separation based on X-ray absorption
- **Conveying** between unit processes belt conveyors, screw conveyors, scraper conveyors
- **Packing** bales, briquettes, pellets
- Storing

Waste feeding

Crush and feed

In a fluidized bed incinerator, stable and uniform feeding is of great importance.

Waste feeding - Pretreatment

SRF production Objectives

- More uniform quality of the fuel
 - Better known heating value
 - More equal particle size => better operation and less maintenance of conveying and supply equipment
 - Reduction of harmful material
 - Reduction of corrosion and fouling of the boiler
 - Lower emissions, not so expensive fuel gas treatment
- Increase of material recovery

Waste feeding - Pretreatment Turku Pretreatment of wood, energy and landfill waste

Waste feeding - Pretreatment SRF production in Turku, Finland

Furnace - air distributor

Tube air distributor

Standard solution for nonproblematic fuels ash drain via center tube (low bedash forming fuels) or ash cooler (high bedash forming fuels)

Solution for multi-fuel fired applications with high plugging tendency (wires, stones) ash drain over complete furnace section and bed material recirculation

Furnace - air distributor

Tube air distributor

The nozzle grid

Primary air pipes before installing the nozzles of the nozzle grid

Furnace

Inner-circulated fluidized bed

Furnace

Combined-circulated fluidized bed

Furnace

High density inert bed material

⇒ Prevent large waste from depositing and light waste from floating

Special distributor with directional wind caps

⇒ Uniform incineration and unhindered slagging

Secondary air swirl

 ⇒ Homogeneous temperature at high temperature region, strong flue gas mixing, enough residence time, and emission control.

3. Introduction of commercial fluidized bed waste to energy plants

Large scale CFBI integration technology for MSW

 Key incineration technology and systems dispersed
 different levels
 Lack of targeted technology

Waste pretreatment and feed

00000

Crush, Removal of iron, feed

 Development of circulating fluidized bed technology integration systems and equipment to adapt to a variety of different capacity

 ✓ Co-development of waste disposal capacity of various incineration unit with 150, 200, 250, 300, 350, 400, 600, 800 tons / day with Nantong Wanda Boiler Corp.

Semi-dry scrubber, baghouse filter with activated carbon injection Incinerator

gas cleaning system

Features of fluidized bed combustor

Fluidized Bed Incineration Technologies in China

CFB technology from ZJU

- D Muiti solid circulation
- Moderate circulating rate
- Special air distribution
- Special heat transfer surface design

44 waste incineration plants

Combined-CFB incinerator of ZJU

- Combined circulation inside and outside the furnace
- Semi-adiabatic membrane wall
- Hot-cold grading air supply

WTE Technology

(a) Zhejiang Univ. (b) Chinese Academy of Sciences, (c) Tsinghua Univ.

1) msw feeder; 2) air distributor; 3) bottom ash discharger; 4) CFB combustion chamber;5) cyclone seperator;6) super heater 7) economizer;8) air preheater; 9) primary fan 10) secondary fan 11) induce fan

CFB WTE Plants

1998, Hangzhou (1×150 t/d)

2007, Zibo (3×400 t/d)

2002, Hangzhou (2×300 t/d + 1×200 t/d) 郑州市新建垃圾焚烧发电项目效果图

2012, Zhengzhou

 $(4 \times 800 \text{ t/d})$

Wuchang Plant, Hubei Province

650 t/d×3=1,950 t/d

Cixi Plant, Zhejiang Province (800 t/d)

Combined Drying-Incineration system for sludge Shaoxing – co-fired in MSW incinerator

Location

Shaoxing, Zhejiang Province

> Year

2008

Fuel

Sludge and MSW

Capacity

Sludge 1000t/d, MSW 1200t/d

Routine

Dried sludge with moisture content 40%, as the assistant fuel of MSW

Combined Drying-Incineration system for sludge

Fuyang – co-fired in FBC boiler

Location

Fuyang ba-yi sewage treatment plant

> Year

2010

Sludge

The papermaking sludge

- Capacity 1500t/d
- Routine

Sludge is dewatered to 45-50% with sludge deep dewatering technique

Fixed bed reactor

Fixed bed combustors

Counter-current fixed bed ("up draft")

A fixed bed of fuel through which air flows in counter-current configuration

Co-current fixed bed ("down draft") Similar to the counter-current type, but air flows in co-current configuration with the fuel

Comprison between Grate furnace and CFB

Operation Parameters	Grate Furnace	CFB
Steam pressure	medium pressure 4.0Mpa	medium pressure 3.82Mpa
Steam temperature	400°C	450°C
Exhaust gas temperature	around 190°C	around 150°C
Primary air pressure	low within 8Kpa	high, 15Kpa is needed in general
Primary air temperature	Low, 220°C in general, primary and secondary air are equipped with steam heater.	high, the primary air temperature of latest type furnace can reach above 350°C and 250°C generally. It makes use of the waste heat of tail flue gas to heat the air.

Features of fluidized bed combustion

Features of fluidized bed combustion

✓ Steam parameters 485°C, 5.3MP,
2~5% higher than the stoke grate incinerator (400 °C, 4.0MP)

✓ Unconventional layout for superheater

✓ High fly ash purge, overcome high temperature corrosion

Higher parameters make High Energy Utilization Efficien

Characteristics of MSW

Mixed collection - complex source and composition

- ⇒ Size, chemical and physical characteristics differ a lot
- High moisture contentlow LHV
 - ⇒ Higher requirement of
- incineration technology
- Properties vary a lot

⇒ adverse effects on combustion process & stable operation

