Water and Energy: Some Key Pointers

Dr Alan Nicol, IWMI

EANBO, Addis Ababa

5th September 2018
Introduction: Rapid transformations
Challenges: *Energy disparities*

Cheaper energy and rural electrification could transform small-scale agriculture, making more use of dry season cropping through groundwater development.

Pressures and stresses result from biomass energy consumption contributing to soil loss.
Consequences?
Implications: Energy-water securities

- Water insecurity costs global economy about $500 billion annually; drag on the world economy of c.1% GDP (conservative estimate)

- Challenge of ‘difficult hydrologies’:
 - management through blending natural and built infrastructure

- Employment dependency:
 - WWDR three out of four jobs water-dependent
 - > 1.4 billion jobs, or 42% of the world’s total active workforce, heavily water-dependent
Future: Energy options

- Solar irrigation for dry season cropping
 - Horticulture for local markets
 - Including urban demand
 - Regulating abstraction
• Energy (ies) across the ‘water-smart agriculture’ mix

- Market engagement / demand

- Supply side

- Irrigation management

- Rainfed systems

- Selection of farming techniques and technologies, crop choice

- Required Inputs

- FORMS of ENERGY

- Anticipated Outputs

- Anticipated Outputs
Risks: Managing abstraction
Securities: Energy options
Interrelatedness

• More than 280 transboundary basins
 • Include 45% world’s surface
 • 40% global population
 • Provide 60% annual renewable water

• Complex political economies
• Collective action problem
Conclusions

• Climate-energy-water mix
 • High-level uncertainties
• No/low regrets solutions
 • Affordable energy solutions
 • Energy blends
 • Carbon-energy relationships (soils)
• **Codifying benefits across the water-ag-energy spectrum**
 • Systematizing links and relationships
 • Establishing trade-offs
 • Offering policy options (and connections)